1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juliette [100K]
3 years ago
9

Choose the expression which represents the phrase, “the sum of 12 and a number H”

Mathematics
2 answers:
murzikaleks [220]3 years ago
8 0

Answer:

the correct answer is option C

anyanavicka [17]3 years ago
5 0

Answer:

Hello There!!

Step-by-step explanation:

The answer is c. 12+h as sum means adding 12 and then with h.

hope this helps,have a great day!!

~Pinky~

You might be interested in
What is x-2y=-1 and 2y+y=4 using elimination step by step
Alja [10]

Answer: is it supposed to be 2y+y=4?

8 0
3 years ago
Read 2 more answers
Which list shows these numbers in order from least to greatest​
Rom4ik [11]

Answer:

0.009854, 30%, 1.98, √9

Step-by-step explanation:

Convert to decimals:

0.009854, 1.98, 3.0, 0.3

0.009854, 0.3, 1.98, 3.0

7 0
3 years ago
Help!
natita [175]
Hi there!

B would be the answer, because, as you can see, B's rate in vanilla is much higher than any of the other charts, and the difference between each number on the chart is greater as well.

Hope this helps!
5 0
3 years ago
If 6 times a certain number is added to8, the result is 32. Which of the following equations could be used to solve the problem
Alja [10]

This used to confuse me, too. We can use a variable to represent a number we don't know.

In elementary school, you had a problem that said 3 + _ = 8 and you could figure out the blank was 5.

Instead, we have 3 + x = 8 and we can figure out that x = 5.

We can also be given a value for x and asked something like if x = 8, what is x + 7, which we know is 15.

In algebra, when we multiply by a variable, we just say how many of that variable it is. Twelve times a variable is 12x or 12a or 12q, depending on what letter we decide to use to represent our variable.

So, six times a certain number, which we are spparently calling x, is 6x. Adding 8 to that is 6x + 8. Those do not combine to make 14 or 14x because one term has the variable and one does not.

If the result is 32...

6x + 8 = 32

Let's look at the other options.

6x = 32. Where's the 8 added??

6(x + 8) = 32. Well, that looks like it could be it, buuuuut we'd multiply 6 by everything in the parentheses, so this is 6 times the sum of a number and 8 is 32, or 6x + 48 = 32. Not quite.

6x = 8 + 32. That's six times a number equals the sum of 8 and 32, right? Thaaaat's not what it says.

7 0
4 years ago
Se encontro que la arista de un cubo es de 30cm, con un posible error en la medicion de 0.1. Utilice diferenciales para estimar
Ierofanga [76]

Answer:

a) El error máximo posible es 270 centímetros cúbicos. El error relativo asociado al volumen es 0.01. El error asociado al volumen es 1 por ciento.

b) El máximo error posible del área superficial es 36 centímetros cuadrados. El máximo error posible del área superficial es 36 centímetros cuadrados. El porcentaje de error del área superficial es 0.667 por ciento.

Step-by-step explanation:

Recordemos que el volumen y el área superficial de un cubo quedan representados por las respectivas fórmulas:

V = l^{3} (Ec. 1)

A_{s} = 6\cdot l^{2} (Ec. 2)

Donde:

l - Longitud de la arista, medida en centímetros.

A_{s} - Área superficial, medida en centrímetros cuadrados.

V - Volumen, medido en centímetros cúbicos.

a) El error máximo posible del volumen del cubo se estima por el siguiente diferencial:

\Delta V = \frac{\partial V}{\partial l}\cdot \Delta l (Ec. 3)

Donde:

\Delta V - Error máximo posible del volumen, medido en centímetros cúbicos.

\frac{\partial V}{\partial l} - Primera derivada parcial del volumen con respecto a la longitud de la arista, medida en centrímetros cuadrados.

\Delta l - Error máximo de medición, medido en centímetros.

La derivada parcial de la función de volumen es:

\frac{\partial V}{\partial l} = 3\cdot l^{2} (Ec. 4)

Ahora expandimos (Ec. 3):

\Delta V = 3\cdot l^{2}\cdot \Delta l

Si conocemos que l = 30\,cm y \Delta l = 0.1\,cm, el máximo error posible del volumen es:

\Delta V = 3\cdot (30\,cm)^{2}\cdot (0.1\,cm)

\Delta V = 270\,cm^{3}

El error máximo posible del volumen es 270 centímetros cúbicos.

Obtenemos el error relativo al dividir el resultado anterior por el volumen, es decir:

\epsilon_{V} = \frac{\Delta V}{V} (Ec. 5)

El volumen del cubo es: (l = 30\,cm)

V = (30\,cm)^{3}

V = 27000\,cm^{3}

Ahora sustituimos (Ec. 5):

\epsilon_{V} = \frac{270\,cm^{3}}{27000\,cm^{3}}

\epsilon_{V} = 0.01

El error relativo asociado al volumen es 0.01.

Por último, encontramos el porcentaje de error asociado al volumen:

\%\epsilon_{V} = 0.01\times 100\,\%

\%\epsilon_{V} = 1\,\%

El error asociado al volumen es 1 por ciento.

b) El error máximo posible del área superficial del cubo se estima por el siguiente diferencial:

\Delta A_{s} = \frac{\partial A_{s}}{\partial l}\cdot \Delta l (Ec. 6)

Donde:

\Delta A_{s} - Error máximo posible del área superficial, medido en centímetros cuadrados.

\frac{\partial A_{s}}{\partial l} - Primera derivada parcial del área superficial con respecto a la longitud de la arista, medida en centrímetros.

\Delta l - Error máximo de medición, medido en centímetros.

La derivada parcial de la función de área superficial es:

\frac{\partial A_{s}}{\partial l} = 12\cdot l (Ec. 7)

Ahora expandimos (Ec. 6):

\Delta A_{s} = 12\cdot l\cdot \Delta l

Si conocemos que l = 30\,cm y \Delta l = 0.1\,cm, el máximo error posible del área superficial es:

\Delta A_{S} = 12\cdot (30\,cm)\cdot (0.1\,cm)

\Delta A_{S} = 36\,cm^{2}

El máximo error posible del área superficial es 36 centímetros cuadrados.

Obtenemos el error relativo al dividir el resultado anterior por el volumen, es decir:

\epsilon_{A_{S}} = \frac{\Delta A_{S}}{A_{S}} (Ec. 8)

El área superficial del cubo es: (l = 30\,cm)

A_{S} = 6\cdot (30\,cm)^{2}

A_{S} = 5400\,cm^{2}

Ahora sustituimos (Ec. 8):

\epsilon_{A_{S}} = \frac{36\,cm^{2}}{5400\,cm^{2}}

\epsilon_{A_{S}} = 6.667\times 10^{-3}

El error relativo del área superficial es 6.667 × 10⁻³.

Por último, encontramos el porcentaje de error asociado al área superficial:

\%\epsilon_{A_{S}} = 6.667\times 10^{-3}\times 100\,\%

\%\epsilon_{A_{S}} = 0.667\,\%

El porcentaje de error del área superficial es 0.667 por ciento.

6 0
3 years ago
Other questions:
  • What is the additive inverse of -4b
    5·2 answers
  • (a) What is 0.36 repeating 36 expressed as a fraction in simplest form? (b) What is 0.36 repeating 6 expressed as a fraction in
    15·2 answers
  • A triangle has sides of lengths 12, 14, and 19. Is it a right triangle? Explain.
    13·1 answer
  • Solve for t. You must write your answer in fully simplified form.<br> -7t = 18
    6·1 answer
  • A party rental company has chairs and tables for rent. The total cost to rent 2 chairs and 3 tables is $28. The total cost to re
    12·1 answer
  • the student council consists of 32 members. There are 27 decorating for the dance. How many members are not decorating.
    6·1 answer
  • Write the equation of a line perpendicular to y=3x+1and goes through the point ( 6,2) y=−13x+4 y=−13x−4 y=3x+4 y=3x−4
    5·1 answer
  • Find the missing value of a triangle one leg is 12 and the long side is 20 what is the other leg?
    6·2 answers
  • What value of x makes the polygon below have the same perimeter?
    13·2 answers
  • I’m having trouble with my homework
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!