<span>Rectangles have a couple of properties that help distinguish them from other parallelograms. By studying these properties, we will be able to differentiate between various types of parallelograms and classify them more specifically. Keep in mind that all of the figures in this section share properties of parallelograms. That is, they all have</span>
Answer:68.3 degrees
Step-by-step explanation:
The diagram of the triangle ABC is shown in the attached photo. We would determine the length of side AB. It is equal to a. We would apply the cosine rule which is expressed as follows
c^2 = a^2 + b^2 - 2abCos C
Looking at the triangle,
b = 75 miles
a = 80 miles.
Angle ACB = 180 - 42 = 138 degrees. Therefore
c^2 = 80^2 + 75^2 - 2 × 80 × 75Cos 138
c^2 = 6400 + 5625 - 12000Cos 138
c^2 = 6400 + 5625 - 12000 × -0.7431
c^2 = 12025 + 8917.2
c = √20942.2 = 144.7
To determine A, we will apply sine rule
a/SinA = b/SinB = c/SinC. Therefore,
80/SinA = 144.7/Sin 138
80Sin 138 = 144.7 SinA
SinA = 53.528/144.7 = 0.3699
A = 21.7 degrees
Therefore, theta = 90 - 21.7
= 68.3 degees
Use the equation A=(1/2)bh
Replace b with 7
Replace h with 12
A=(1/2)(7)(12)
A=(1/2)(84)
A=42
Answer: 0.66 Feet
Step-by-step explanation: There are 2.54 centimeters in an inch and there are 12 inches in a foot.
<em>Please mark me as brainliest! </em>