1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alecsey [184]
3 years ago
5

What are the zeros of f(x) = x2 - x - 20?

Mathematics
1 answer:
sattari [20]3 years ago
5 0

Answer:

(-4,0) and (5,0)

Step-by-step explanation:

Factor.

f(x) = x^2 -x - 20

Factors of -20 that when are added they equal -1

-5 and 4

(x-5) (x+4)

x=5 and x=-4

You might be interested in
Find the missing dimension of the solid. Round your answer to the nearest 10th
Svetach [21]

Answer:

the answer is 9.9997 ft

Step-by-step explanation:

the equation to find the radius is

r = √(3v / πh)

5 0
3 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
What is the quotient?<br> 7)<br> 126<br> А.<br> 16<br> B.<br> 17<br> С<br> 18<br> D<br> 19
Hunter-Best [27]

Answer:

C

Step-by-step explanation:

The quotient is 18

6 0
3 years ago
Show that x = -2 is a solution of 3x² + 13x + 14 = 0​
Oliga [24]

Answer:

x= -2 is correct answer

Step-by-step explanation:

3(-2×-2)+13(-2)+14=0

3(4)+13(-2)+14=0

12+(-26)+14=0

12-26+14=0

12+14-26=0

26-26=0

0=0

3 0
3 years ago
Please give me the answer
Tcecarenko [31]

Answer:

7 units

Step-by-step explanation:

hope I helped today

8 0
3 years ago
Read 2 more answers
Other questions:
  • Fill in the blanks (ASAP- 30 points, must answer all)
    8·2 answers
  • The temperature was -3c last night. it is now -4c. what was the change in temperature
    9·1 answer
  • The coordinates of point Bare<br> (-3.2)<br> (2-3)<br> (2.3)
    13·1 answer
  • the length of a rectangle is 4 less than 3 times the width. if the perimeter is 40, find the dimensions of the rectangle.
    5·2 answers
  • Can someone help me with this problem!
    11·1 answer
  • Good afternoon please help! Geometry! Thank You!! Brainliest!
    6·1 answer
  • Approximately how many strides does it take to complete a marathon?<br> Choose 1 answer:
    9·2 answers
  • Which value is a solution to the inequality? 3x &lt; 21
    5·1 answer
  • 5/6 x 1/3= ________<br>​
    13·2 answers
  • Jerry rolled a fair number cube 24 times. Which of the following is the most reasonable outcome ?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!