Answer:
because you probably liked her or you just miss her company ya know talking with her or just messing around lol
Each letter of the alphabet is worth two times as much as the one before it, implying that the value of each letter rises in mathematical progression. The formula for finding the nth term of an arithmetic progression would be used. I am written as
a + (n - 1)d = Tn
Where
The number of terms in the arithmetic sequence is represented by n.
The common difference of the terms in the arithmetic sequence is represented by d.
The first term of the arithmetic sequence is represented by a.
Tn stands for the nth word.
Based on the facts provided,
n = 26 characters1 Equals a
3 minus 1 equals 2 (difference between 2 letters)
Therefore,
1 + (26 - 1)2 = T26
51 = T26
The formula for calculating the sum of an arithmetic sequence's n terms
is as follows:
[2a + (n - 1)d] Sn = n/2
As a result, S26 is the sum of the first 26 terms.
S26 = 20/2[2 1 + (26 - 1)2] S26 = 20/2
[2 + 50] S26 =
676 = S26 = 13 52
Answer:
4,5,27
Problem:
Boris chose three different numbers.
The sum of the three numbers is 36.
One of the numbers is a perfect cube.
The other two numbers are factors of 20.
Step-by-step explanation:
Let's pretend those numbers are:
.
We are given the sum is 36:
.
One of our numbers is a perfect cube.
where
is an integer.
The other two numbers are factors of 20.
and
where
.

From here I would just try to find numbers that satisfy the conditions using trial and error.






So I have found a triple that works:

The numbers in ascending order is:

the standard form of a quadratic formula is
y = ax^2 + bx + c
in this case you will solve using foil method
(× - 4)(x + 3)
<em>(</em><em>x</em><em> </em><em>×</em><em> </em><em>x</em><em>)</em><em> </em><em>+</em><em>(</em><em> </em><em>x</em><em> </em><em>×</em><em> </em><em>3</em><em> </em><em>)</em><em>(</em><em>-</em><em> </em><em>4</em><em> </em><em>×</em><em> </em><em>x</em><em>)</em><em> </em><em>(</em><em> </em><em>-4</em><em>)</em><em>×</em><em> </em><em>3</em><em>)</em><em>)</em>
<em>x</em><em>^</em><em>2</em><em> </em><em>+</em><em> </em><em>3x</em><em> </em><em>-</em><em> </em><em>4x</em><em> </em><em>-12</em>
<em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>x</em><em> </em><em>-</em><em> </em><em>1</em><em>2</em>
<em>therefore</em><em> </em>
<em>y</em><em> </em><em>=</em><em> </em><em>x^</em><em>2-</em><em> </em><em>x</em><em> </em><em><u>-</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u> </u></em>