1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
topjm [15]
3 years ago
13

An office building has 123 floors. The floors are 3.8m apart.

Mathematics
1 answer:
sineoko [7]3 years ago
3 0

Answer:

345.8 meters

Step-by-step explanation:

Given that :

Distance between floors = 3.8 m apart

Moving from floor 32 to the top

Number of floors moved = 123 - 32 = 91 floors

Distance traveled :

Distance between floors * number of floors moved

3.8 m * 91 = 345.8 meters

You might be interested in
Find dy/dx x^3+y^3=18xy
tatyana61 [14]
Differentiate both sides of the equation.<span><span><span>d<span>dx</span></span><span>(<span>x3</span>+<span>y3</span>)</span>=<span>d<span>dx</span></span><span>(18xy)</span></span><span><span>d<span>dx</span></span><span>(<span>x3</span>+<span>y3</span>)</span>=<span>d<span>dx</span></span><span>(18xy)</span></span></span>Differentiate the left side of the equation.Tap for fewer steps...By the Sum Rule, the derivative of <span><span><span>x3</span>+<span>y3</span></span><span><span>x3</span>+<span>y3</span></span></span> with respect to <span>xx</span> is <span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>.<span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>Differentiate using the Power Rule which states that <span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span></span> is <span><span>n<span>x<span>n−1</span></span></span><span>n<span>x<span>n-1</span></span></span></span> where <span><span>n=3</span><span>n=3</span></span>.<span><span>3<span>x2</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span>3<span>x2</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>Evaluate <span><span><span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>.Tap for more steps...<span><span>3<span>x2</span>+3<span>y2</span><span>d<span>dx</span></span><span>[y]</span></span><span>3<span>x2</span>+3<span>y2</span><span>d<span>dx</span></span><span>[y]</span></span></span>Differentiate the right side of the equation.Tap for fewer steps...Since <span>1818</span> is constant with respect to <span>xx</span>, the derivative of <span><span>18xy</span><span>18xy</span></span> with respect to <span>xx</span> is <span><span>18<span>d<span>dx</span></span><span>[xy]</span></span><span>18<span>d<span>dx</span></span><span>[xy]</span></span></span>.<span><span>18<span>d<span>dx</span></span><span>[xy]</span></span><span>18<span>d<span>dx</span></span><span>[xy]</span></span></span>Differentiate using the Product Rule which states that <span><span><span>d<span>dx</span></span><span>[f<span>(x)</span>g<span>(x)</span>]</span></span><span><span>d<span>dx</span></span><span>[f<span>(x)</span>g<span>(x)</span>]</span></span></span> is <span><span>f<span>(x)</span><span>d<span>dx</span></span><span>[g<span>(x)</span>]</span>+g<span>(x)</span><span>d<span>dx</span></span><span>[f<span>(x)</span>]</span></span><span>f<span>(x)</span><span>d<span>dx</span></span><span>[g<span>(x)</span>]</span>+g<span>(x)</span><span>d<span>dx</span></span><span>[f<span>(x)</span>]</span></span></span> where <span><span>f<span>(x)</span>=x</span><span>f<span>(x)</span>=x</span></span> and <span><span>g<span>(x)</span>=y</span><span>g<span>(x)</span>=y</span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span></span>Rewrite <span><span><span>d<span>dx</span></span><span>[y]</span></span><span><span>d<span>dx</span></span><span>[y]</span></span></span> as <span><span><span>d<span>dx</span></span><span>[y]</span></span><span><span>d<span>dx</span></span><span>[y]</span></span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span></span>Differentiate using the Power Rule which states that <span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span></span> is <span><span>n<span>x<span>n−1</span></span></span><span>n<span>x<span>n-1</span></span></span></span> where <span><span>n=1</span><span>n=1</span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y⋅1)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y⋅1)</span></span></span>Multiply <span>yy</span> by <span>11</span> to get <span>yy</span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y)</span></span></span>Simplify.Tap for more steps...<span><span>18x<span>d<span>dx</span></span><span>[y]</span>+18y</span><span>18x<span>d<span>dx</span></span><span>[y]</span>+18y</span></span>Reform the equation by setting the left side equal to the right side.<span><span>3<span>x2</span>+3<span>y2</span>y'=18xy'+18y</span><span>3<span>x2</span>+3<span>y2</span>y′=18xy′+18y</span></span>Since <span><span>18xy'</span><span>18xy′</span></span> contains the variable to solve for, move it to the left side of the equation by subtracting <span><span>18xy'</span><span>18xy′</span></span> from both sides.<span><span>3<span>x2</span>+3<span>y2</span>y'−18xy'=18y</span><span>3<span>x2</span>+3<span>y2</span>y′-18xy′=18y</span></span>Since <span><span>3<span>x2</span></span><span>3<span>x2</span></span></span> does not contain the variable to solve for, move it to the right side of the equation by subtracting <span><span>3<span>x2</span></span><span>3<span>x2</span></span></span> from both sides.<span><span>3<span>y2</span>y'−18xy'=−3<span>x2</span>+18y</span><span>3<span>y2</span>y′-18xy′=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3<span>y2</span>y'−18xy'</span><span>3<span>y2</span>y′-18xy′</span></span>.Tap for fewer steps...Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3<span>y2</span>y'</span><span>3<span>y2</span>y′</span></span>.<span><span>3y'<span>(<span>y2</span>)</span>−18xy'=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>)</span>-18xy′=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>−18xy'</span><span>-18xy′</span></span>.<span><span>3y'<span>(<span>y2</span>)</span>+3y'<span>(−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>)</span>+3y′<span>(-6x)</span>=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3y'<span>y2</span>+3y'<span>(−6x)</span></span><span>3y′<span>y2</span>+3y′<span>(-6x)</span></span></span>.<span><span>3y'<span>(<span>y2</span>−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>-6x)</span>=-3<span>x2</span>+18y</span></span>Divide each term by <span><span><span>y2</span>−6x</span><span><span>y2</span>-6x</span></span> and simplify.Tap for fewer steps...Divide each term in <span><span>3y'<span>(<span>y2</span>−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>-6x)</span>=-3<span>x2</span>+18y</span></span> by <span><span><span>y2</span>−6x</span><span><span>y2</span>-6x</span></span>.<span><span><span><span>3y'<span>(<span>y2</span>−6x)</span></span><span><span>y2</span>−6x</span></span>=−<span><span>3<span>x2</span></span><span><span>y2</span>−6x</span></span>+<span><span>18y</span><span><span>y2</span>−6x</span></span></span><span><span><span>3y′<span>(<span>y2</span>-6x)</span></span><span><span>y2</span>-6x</span></span>=-<span><span>3<span>x2</span></span><span><span>y2</span>-6x</span></span>+<span><span>18y</span><span><span>y2</span>-6x</span></span></span></span>Reduce the expression by cancelling the common factors.Tap for more steps...<span><span>3y'=−<span><span>3<span>x2</span></span><span><span>y2</span>−6x</span></span>+<span><span>18y</span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>x2</span></span><span><span>y2</span>-6x</span></span>+<span><span>18y</span><span><span>y2</span>-6x</span></span></span></span>Simplify the right side of the equation.Tap for more steps...<span><span>3y'=−<span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span></span></span>Divide each term by <span>33</span> and simplify.Tap for fewer steps...Divide each term in <span><span>3y'=−<span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span></span></span> by <span>33</span>.<span><span><span><span>3y'</span>3</span>=−<span><span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span>3</span></span><span><span><span>3y′</span>3</span>=-<span><span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span>3</span></span></span>Reduce the expression by cancelling the common factors.Tap for more steps...<span><span>y'=−<span><span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span>3</span></span><span>y′=-<span><span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span>3</span></span></span>Simplify the right side of the equation.Tap for more steps...<span><span>y'=−<span><span><span>x2</span>−6y</span><span><span>y2</span>−6x</span></span></span><span>y′=-<span><span><span>x2</span>-6y</span><span><span>y2</span>-6x</span></span></span></span>Replace <span><span>y'</span><span>y′</span></span> with <span><span><span>dy</span><span>dx</span></span><span><span>dy</span><span>dx</span></span></span>.<span><span><span>dy</span><span>dx</span></span>=−<span><span><span><span>x2</span>−6y</span><span><span>y2</span>−6x</span></span></span></span>
6 0
3 years ago
Ziv's taxicab ride cost $33. He left a 15% tip.
Oksi-84 [34.3K]

Answer:

37.95

Step-by-step explanation:

33 x 15%

0.15 x 33 = 4.95

33 + 4.95 = 37.95

3 0
3 years ago
Solve it (2⋅3) ^2−5 ^2=
sattari [20]

Answer:

11

Step-by-step explanation:

(2×3)^2 = 6^2 = 36

5^2 = 25

(2×3)^2 - 5^2 = 36 - 25 = 11

5 0
3 years ago
Read 2 more answers
you invest $1000 in an account at 2.5% per year simple interest. How much will you have in the account at the beginning of the 4
AlladinOne [14]

Answer:

Step-by-step explanation:

I = PRT

P = 1000

R = 2.5% or 0.025

T = 4

I = (1000)(.025)(4)

I=100

1000+100=1100

but the answer choices???

8 0
3 years ago
Giovanna and Janet have jobs where they get paid by the hour .Below are the numbers of hours of each have worked on each of the
Harman [31]
I would need more information to help you. Like the numbers of hours worked, amount of money made, and the statements.
5 0
3 years ago
Other questions:
  • Geometric mean 10 and 50
    15·1 answer
  • Find x in the given figure. answers: 18 144 24 9
    9·2 answers
  • Graph the function. y = 7(6)x+2 + 1
    11·1 answer
  • The parent function is f(x)=2^x+3 −3 The new function is g(x)=2^x+2 −1
    13·1 answer
  • 3. Identify the following as true or false. For those that are false, explain why they are false.
    7·1 answer
  • Identify the domain and range of each function. y = 4^-5 + 3
    13·2 answers
  • Distribute and Combine Like Terms. 2(x + 7) - 2x
    12·2 answers
  • Hats 2000000x7323939489384? i been really stuck on this one
    11·1 answer
  • On wends day 72% of the customers who bought gas at the gas station made additional purchases.There were 250 customers who bough
    14·1 answer
  • Is x=5 a solution to 2(x+7)-1=(x+2)+(x+3)<br><br> Please help this is my quiz
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!