Answer:
θ = 5π/6 rad and 11π/6 rad
Step-by-step explanation:
Given the expression cotθ+√3=0
Subtract √3 from both sides
cotθ+√3-√3=0-√3
cotθ = -√3
Since cotθ = 1/tanθ
1/tanθ = -√3
Reciprocate both sides:
tanθ = -1/√3
θ = tan^-1(-1/√3)
θ = -30°
Since the angle is negative, and tanθ is negative in the second and fourth quadrant.
In the second quadrant;
θ = 180-30
θ = 150°
Since 180° = πrad
150° = 150π/180
150° = 5π/6 rad
In the fourth quadrant;
θ = 360-30
θ = 330°
Since 180° = πrad
330° = 330π/180
330° = 11π/6 rad
Hence the solutions are 5π/6 rad and 11π/6 rad.
Well, that's incorrect because according to the Order of Operation [GEMS\BOMDAS\PEMDAS etc.], that -7 has to be distributed amongst all the other terms in parentheses. Besides, you did the wrong operation when you inserted that subtraction symbol in substitution of the parentheses, which means to MULTIPLY. So, the order goes as follows:
12 - 7[72]
-504 + 12 = -492 [OR 12 - 504]
-492 is your answer. You get it now?
Answer:
YES
NO
NO
Step-by-step explanation:
The given polynomial is: 
(x - a) is a factor of a polynomial iff x = a is a solution to the polynomial.
To check if (x - 5) is a factor of the polynomial f(x), we substitute x = 5 and check if it satisfies the equation.
∴ f(5) = 5³ + 4(5)² - 25(5) - 100
= 125 + 100 - 125 - 100
= 225 - 225
= 0
We see, x = 5 satisfies f(x). So, (x - 5) is a factor to the polynomial.
Now, to check (x + 2) is a factor.
i.e., to check x = - 2 satisfies f(x) or not.
f(-2) = (-2)³ + 4(-2)² - 25(-2) - 100
= -8 + 16 + 50 - 100
= -108 + 66
≠ 0
Therefore, (x + 2) is not a factor of f(x).
To check (x - 4) is a factor.
∴ f(4) = 4³ + 4(4)² - 25(4) - 100
= 64 + 64 - 100 - 100
= 128 - 200
≠ 0
Therefore, (x - 4) is not a factor of f(x).
Answer:
Thus, the two root of the given quadratic equation
is 5.24 and 0.76 .
Step-by-step explanation:
Consider, the given Quadratic equation, 
This can be written as , 
We have to solve using quadratic formula,
For a given quadratic equation
we can find roots using,
...........(1)
Where,
is the discriminant.
Here, a = 1 , b = -6 , c = 4
Substitute in (1) , we get,





and 
We know
(approx)
Substitute, we get,
(approx) and
(approx)
(approx) and
(approx)
Thus, the two root of the given quadratic equation
is 5.24 and 0.76 .
Answer:
86
Step-by-step explanation:
<u>Perimeter of WXY = WSY+WRX+XY</u>
<em>--> WSY = SY x 2</em>
--> WSY = 16 x 2 = 32
<em>Since it is an isosceles triangle, WRX = WSY</em>
--> WRX = 32
<em>--> Draw a straight line from W to XY to divide it into two halves assuming it to be point A. This would form a right angle triangle of WAX.</em>
<em>--> Solve it using the cos theta rule</em>
--> Angle = Angle X = 70°
Hypotenuse = WRX = 32
Adjacent = WA = ?
<em>--> Cos (Angle) = Adjacent/Hypotenuse</em>
Cos (70) = WA/32
WA = 10.9 rounded off to 11
--> WA=AY= 11
--> XY = WA + AY = 11+11 = 22
<em>--> Perimeter = WSY+WRX+XY</em>
Perimeter = 32+32+22
Perimeter = 86
Therefore, the perimeter of WXY is 86.