Answer:
Step-by-step explanation:
It is convenient to memorize the trig functions of the "special angles" of 30°, 45°, 60°, as well as the way the signs of trig functions change in the different quadrants. Realizing that the (x, y) coordinates on the unit circle correspond to (cos(θ), sin(θ)) can make it somewhat easier.
__
<h3>20.</h3>
You have memorized that cos(x) = (√3)/2 is true for x = 30°. That is the reference angle for the 2nd-quadrant angle 180° -30° = 150°, and for the 3rd-quadrant angle 180° +30° = 210°.
Cos(x) is negative in the 2nd and 3rd quadrants, so the angles you're looking for are
150° and 210°
__
<h3>Bonus</h3>
You have memorized that sin(π/4) = √2/2, and that cos(3π/4) = -√2/2. The sum of these values is ...
√2/2 + (-√2/2) = 0
_____
<em>Additional comments</em>
Your calculator can help you with both of these problems.
The coordinates given on the attached unit circle chart are (cos(θ), sin(θ)).
8 x 200
= 8 x 2 x 100
= 16 x 100
= 1,600
--------------
Answer:
$1,600
Answer: 0.35
Step-by-step explanation:
3.325 divided by 9.5 = 0.35
Answer:
48,000,000
Step-by-step explanation:
47,709,982
Look at the millions place and then see if the number after that is a greater number than 4. If it isn't, round down but if it is, round up
Answer:
you require two numbers m and n such that. x² + bx + c = (x - m)(x - n) where. m + n = b. and. mn = c. In the case where c = 22 and m & n are integers, we have. mn = 22. But, the (positive) …
Step-by-step explanation: