1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
3 years ago
11

Examples of singular and non-singular matrix.​

Mathematics
1 answer:
finlep [7]3 years ago
3 0

Answer:

Step-by-step explanation: For example, if we have matrix A whose all elements in the first column are zero. Then, by one of the property of determinants, we can say that its determinant is equal to zero. Hence, A would be called as singular matrix. Note that singular matrices are non-invertible (their inverse does not exist).

You might be interested in
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
JUST THE FIRST PART NOT THE DRAWING <br> IM BEGGING AT THIS POINT
Butoxors [25]

Answer:

75 (.2)= 15

75-15=60

The small bag cost $60.

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Writing a linear equations
Ket [755]
Answer:
-1/7
Hope that helped
6 0
3 years ago
Read 2 more answers
A company has fixed operating costs of $2,137.00 per month with a production cost of $15.15 per unit. If each unit brings $33.09
vampirchik [111]
Y=2,137.00-(15.15*X)+(33.09*X)

Its simple arithmetic when you get down to it. The $2,137 won't change because it is the base rate per month, meaning even if they don't make any units they will still earn that much in the month. You subtract from that the cost to make a unit, in this case it is $15.15 per unit, so you multiply the cost by number of units to get the month's total costs. Then add the total month's profits by multiplying the number of units by the profits of one unit.
8 0
4 years ago
Please help me with these factoring problems. Please help me solve. I can't do these!!
aleksley [76]
Simple...

you have: 

1.) -8x-16  --->>>

Factor out a -8 -->>

-8(x+2)

2.)9d+15db --->

Factor out 3d -->

3d(3+5b)

3.) 2a-9ax-->>

Factor out -a -->

-1a(9x-2)

Thus, your answer.
3 0
3 years ago
Other questions:
  • What is the perimeter of this rectangle?
    15·1 answer
  • Hurry will mark brainliest!!!!! when given and angle in degree and the radius how do you calculate the arc length give an exampl
    6·1 answer
  • Can anyone help me with number 7 and the last one and asap <br>and quicccck!
    14·2 answers
  • Help would be much appreciated ​
    15·2 answers
  • Is it easier to find the x-intercept of the graph of the equations using slope-intercept or standard form? Explain.
    10·1 answer
  • Enter a numerical expression that represents the sum of u squared and 9, multiplied by eleven.​
    11·1 answer
  • In a trapezoid, which two segments will always be parallel?
    10·2 answers
  • Find the measure of CB.
    14·2 answers
  • Figure ABCD is transformed to obtain figure A′B′C′D′:
    10·1 answer
  • What is the vertex of the following function? f(x) = 2(x+8)^2 - 2
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!