1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verizon [17]
3 years ago
15

A 5 kg block is released from rest at the top of a quarter- circle type curved frictionless surface. The radius of the curvature

is 3.8 m. When the block reaches the bottom o the curvature it then slides on a rough horizontal surface until it comes to rest. The coefficient of kinetic friction on the horizontal surface is 0.02.
a. What is the kinetic energy of the block at the bottom of the curved surface?
b. What is the speed of the block at the bottom of the curved surface?
c. Find the stopping distance of the block?
d. Find the elapsed time of the block while it is moving on the horizontal part of the track.
e. How much work is done by the friction force on the block on the horizontal part of the track?
Physics
1 answer:
malfutka [58]3 years ago
5 0

Answer:

a. 186.2 J b. 8.63 m/s c. 190 m d. 43.2 s e. 186.2 J

Explanation:

a. From conservation of energy, the potential energy loss of block = kinetic energy gain of the block.

So, U + K = U' + K' where U = initial potential energy of block = mgh, K = initial kinetic energy of block = 0, U' = final potential energy of block at bottom of curve = 0 and K' = final kinetic energy of block at bottom of curve.

So, mgh + 0 = 0 + K'

K' = mgh where m = mass of block = 5 kg, g = acceleration due to gravity = 9.8 m/s², h = initial height above the ground of block = radius of curve = 3.8 m

So, K' = 5 kg × 9.8 m/s² × 3.8 m = 186.2 J

b. Since the kinetic energy of the block K = 1/2mv²  where m = mass of block = 5 kg, v = velocity of block at bottom of curve

So, v = √(2K/m)

= √(2 × 186.2 J/5 kg)

= √(372.4 J/5 kg)

= √(74.48 J/kg)

= 8.63 m/s

c. To find the stopping distance, from work-kinetic energy principles,

work done by friction = kinetic energy change of block.

So ΔK = -fd where ΔK = K" - K' where K" = final kinetic energy = 0 J (since the block stops)and K' = initial kinetic energy = 186.2 J, f = frictional force = μmg where μ = coefficient of kinetic friction = 0.02, m = mass of block = 5 kg, g = acceleration due to gravity = 9.8 m/s² and d = stopping distance

ΔK = -fd

K" - K' = - μmgd

d = -(K" - K')/μmg

Substituting the values of the variables, we have

d = -(0 J - 186.2 J)/(0.02 × 5 kg × 9.8 m/s²)

d = -(- 186.2 J)/(0.98 kg m/s²)

d = 190 m

d. Using v² = u² + 2ad where u =initial speed of block = 8.63 m/s, v = final speed of block = 0 m/s (since it stops), a = acceleration of block and d = stopping distance = 190 m

So, a = (v² - u²)/2d

substituting the values of the variables, we have

a = (0² - (8.63 m/s)²)/(2 × 190 m)

a = -74.4769 m²/s²/380 m

a = -0.2 m/s²

Using v = u + at, we find the time t that elapsed while the block is moving on the horizontal track.

t = (v - u)/a

t =(0 m/s - 8.63 m/s)/-0.2 m/s²

t = - 8.63 m/s/-0.2 m/s²

t = 43.2 s

e. The work done by friction W = fd where

= μmgd where f = frictional force = μmg where μ = coefficient of kinetic friction = 0.02, m = mass of block = 5 kg, g = acceleration due to gravity = 9.8 m/s² and d = stopping distance = 190 m

W = 0.02 × 5 kg × 9.8 m/s² × 190 m

W = 186.2 J

You might be interested in
a car with a mass of 2,000 kilograms is moving around a circular curve at a uniform velocity of 25 meters per second. the curve
Ber [7]
Fc=mv^2/r so we get 

2000kg*(25m/s)^2/(80m)= 15625N of force 

hope this helps! Thank You!!

4 0
3 years ago
An Iowa class warship holds the record for the fastest warship. If the ship accelerates uniformly from rest at 0.15 m/s² for 2 m
Mumz [18]
The equation to be used is the derived formulas for rectilinear motion at a constant acceleration. The formula for acceleration is

a = (v - v₀)/t
where
v and v₀ are the initial and final velocities, respectively
t is the time
a is the acceleration

Since it started from rest, v₀ = 0. Using the formula:

0.15 m/s² = (v - 0)/[2 minutes*(60 s/1 min)]
Solving for v,
v = 18 m/s
3 0
3 years ago
A force of 50 newtons causes a sled to accelerate at a rate of 5 meters per second. What is the mass of the sled.
notka56 [123]
F=ma
50=m(5)
m=10kg
hence,ans is B
5 0
3 years ago
Read 2 more answers
How much energy is consumed by a 12 W night light left on for 10 hr?
shutvik [7]

Answer:

Energy consumed is 0.00033 Joules.

Explanation:

the formula of Energy is:

Energy = power/ time.

6 0
3 years ago
What is a magnet?<br>just the basic definition ​
attashe74 [19]

Answer:

A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.

Explanation:

please mark me as the brainliest please please

5 0
3 years ago
Read 2 more answers
Other questions:
  • An object is moving at 10 m/s slows to 6 m/s in 4 seconds. What is its average acceleration?? Help pls!!
    13·1 answer
  • What was the only option for getting the Apollo 13 astronauts back to Earth alive?
    9·2 answers
  • The tenancy of a moving object to continue moving in a strait line or a stationary object to remain in place is called
    13·1 answer
  • Thunderstorms are often produced ahead of this type of front
    7·1 answer
  • Which muscle group works the hardest (isometrically) when performing a wrist curl in the pronated position?
    8·2 answers
  • What is one advantage the Hyperloop would have over other types of transportation?
    14·2 answers
  • John is gardening and finds a tree root in the soil. He decides he will try to pull it out. He grabs onto it and uses a force of
    9·1 answer
  • A ball is thrown straight upward at 10 m/s. Ideally (no air resistance), the ball will return to the thrower's hand with a speed
    14·1 answer
  • Help help help help help help help help help
    8·2 answers
  • A body travel from rest and acceleration to a speed of 120kg/hours in 10 seconds . calculate acceleration​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!