The magnetic field strength of a very long current-carrying wire is proportional to the inverse of the distance from the wire. The farther you go from the wire, the weaker the magnetic field becomes.
B ∝ 1/d
B = magnetic field strength, d = distance from wire
Calculate the scaling factor for d required to change B from 25μT to 2.8μT:
2.8μT/25μT = 1/k
k = 8.9
You must go to a distance of 8.9d to observe a magnetic field strength of 2.8μT
Answer:
d
Explanation:
d because the sun is in the center and everything else surrounds it
The correct answer is "C". 'Old theories are adjusted to incorporate all old new information.' This makes the most sense, regarded the old and new information should be taken into consideration.
I hope this helped you!
Brainliest answer is always appreciated!
Answered using calculus.
Antidifferentiated the acceleration to get velocity. Added variable c as we do not know if there was an extra number there yet.
Knowing that when time is 0, the velocity is 20, we can substitute those numbers into the equation and find that c = 20.
Now we have full velocity equation: v = 1.5t + 20
Now we substitute 4 into t to find out the velocity after 4 seconds. This gives us the final answer of 26m/s