The marginal distribution for gender tells you the probability that a randomly selected person taken from this sample is either male or female, regardless of their blood type.
In this case, we have total sample size of 714 people. Of these, 379 are male and 335 are female. Then the marginal probability mass function would be
![\mathrm{Pr}[G = g] = \begin{cases} \dfrac{379}{714} \approx 0.5308 & \text{if }g = \text{male} \\\\ \dfrac{335}{714} \approx 0.4692 & \text{if } g = \text{female} \\\\ 0 & \text{otherwise} \end{cases}](https://tex.z-dn.net/?f=%5Cmathrm%7BPr%7D%5BG%20%3D%20g%5D%20%3D%20%5Cbegin%7Bcases%7D%20%5Cdfrac%7B379%7D%7B714%7D%20%5Capprox%200.5308%20%26%20%5Ctext%7Bif%20%7Dg%20%3D%20%5Ctext%7Bmale%7D%20%5C%5C%5C%5C%20%5Cdfrac%7B335%7D%7B714%7D%20%5Capprox%200.4692%20%26%20%5Ctext%7Bif%20%7D%20g%20%3D%20%5Ctext%7Bfemale%7D%20%5C%5C%5C%5C%200%20%26%20%5Ctext%7Botherwise%7D%20%5Cend%7Bcases%7D)
where G is a random variable taking on one of two values (male or female).
Yes correct
0.04
step by step explanation:
i’m here for the points sorry
38 quarts because four quart equals one gallon.
Answer:
(-7)∧-1
Step-by-step explanation:
(-7)^3 / (-7)^4
taking each and simplifing it
-7³ = -7 x -7 x -7
(-7)∧4 = -7 x -7 x -7 x -7
(-7)^3 / (-7)^4 = (-7 x -7 x -7 ) / ( -7 x -7 x -7 x -7) = 1/-7
1/-7 ( 1/ means raise to power -1)
1/-7 = (-7)∧-1
Given zeroes are:
x1 = -6
x2 = 5
x3 = -2
The general formula for cubic function that has zeroes is: (factor form)
(x-x1)*(x-x2)*(x-x3)
if we express our zeroes we get:
(x+6)*(x-5)*(x+2) = (x^2 - 5x +6x - 30)(x+2) = (x^2 + x - 30) ( x+2)=
x^3 + x^2 -30x +2x^2 + 2x - 60 = x^3 +3x^2 -32x - 60