Answer:
1 True
2 c>−4
3 x< 3/2
Step-by-step explanation:
Answer:
solution: x = -8
Step by step:
1) 5x-5+5 = -45+5 : Add 5 to both sides
2) 5x= -40 : Simplify
3) 5x/5 = -40/5 : Divide both sides
Hope that helps
Answer:
Yes. Every unique input has a unique output.
Step-by-step explanation:
Since every input has a different output, therefore it's a function. It's not a function when the input have more than 1 output. When graphing, make sure you take the vertical line test to see whether or not the graph is a function.
Solving for <em>Angles</em>

* Do not forget to use the <em>inverse</em> function towards the end, or elce you will throw your answer off!
Solving for <em>Edges</em>

You would use this law under <em>two</em> conditions:
- One angle and two edges defined, while trying to solve for the <em>third edge</em>
- ALL three edges defined
* Just make sure to use the <em>inverse</em> function towards the end, or elce you will throw your answer off!
_____________________________________________
Now, JUST IN CASE, you would use the Law of Sines under <em>three</em> conditions:
- Two angles and one edge defined, while trying to solve for the <em>second edge</em>
- One angle and two edges defined, while trying to solve for the <em>second angle</em>
- ALL three angles defined [<em>of which does not occur very often, but it all refers back to the first bullet</em>]
* I HIGHLY suggest you keep note of all of this significant information. You will need it going into the future.
I am delighted to assist you at any time.
Answer:
Step-by-step explanation
Hello!
Be X: SAT scores of students attending college.
The population mean is μ= 1150 and the standard deviation σ= 150
The teacher takes a sample of 25 students of his class, the resulting sample mean is 1200.
If the professor wants to test if the average SAT score is, as reported, 1150, the statistic hypotheses are:
H₀: μ = 1150
H₁: μ ≠ 1150
α: 0.05
![Z= \frac{X[bar]-Mu}{\frac{Sigma}{\sqrt{n} } } ~~N(0;1)](https://tex.z-dn.net/?f=Z%3D%20%5Cfrac%7BX%5Bbar%5D-Mu%7D%7B%5Cfrac%7BSigma%7D%7B%5Csqrt%7Bn%7D%20%7D%20%7D%20~~N%280%3B1%29)

The p-value for this test is 0.0949
Since the p-value is greater than the level of significance, the decision is to reject the null hypothesis. Then using a significance level of 5%, there is enough evidence to reject the null hypothesis, then the average SAT score of the college students is not 1150.
I hope it helps!