
Convert the mixed number to an improper fraction:

Subtract the fractions to get your final answer:

Answer:
18 rolls of nickles
Step-by-step explanation:
One roll of dimes would be the same value as 2 rolls of nickles. If she has 9 rolls of dimes, she would have 18 rolls of nickles.
Dont forget to thanks and rate!
Answer:
x=12√2
y=45°
Step-by-step explanation:
as we know diagonal of a square
=a√2
=12√2
and
y=45°
P = 2d
d = 2n.....n = 1/2d
q = d - 3
since dimes is mentioned in relation to quarters, pennies, and the nickels, u would use d as ur variable
ur expression would be : d + (2d) + (1/2d) + (d - 3) = total amount of coins...then u would solve for d, the number of dimes. And once u know that, u can sub that answer back into ur original equations to find the number of pennies, quarters and nickels
Separate the vectors into their <em>x</em>- and <em>y</em>-components. Let <em>u</em> be the vector on the right and <em>v</em> the vector on the left, so that
<em>u</em> = 4 cos(45°) <em>x</em> + 4 sin(45°) <em>y</em>
<em>v</em> = 2 cos(135°) <em>x</em> + 2 sin(135°) <em>y</em>
where <em>x</em> and <em>y</em> denote the unit vectors in the <em>x</em> and <em>y</em> directions.
Then the sum is
<em>u</em> + <em>v</em> = (4 cos(45°) + 2 cos(135°)) <em>x</em> + (4 sin(45°) + 2 sin(135°)) <em>y</em>
and its magnitude is
||<em>u</em> + <em>v</em>|| = √((4 cos(45°) + 2 cos(135°))² + (4 sin(45°) + 2 sin(135°))²)
… = √(16 cos²(45°) + 16 cos(45°) cos(135°) + 4 cos²(135°) + 16 sin²(45°) + 16 sin(45°) sin(135°) + 4 sin²(135°))
… = √(16 (cos²(45°) + sin²(45°)) + 16 (cos(45°) cos(135°) + sin(45°) sin(135°)) + 4 (cos²(135°) + sin²(135°)))
… = √(16 + 16 cos(135° - 45°) + 4)
… = √(20 + 16 cos(90°))
… = √20 = 2√5