1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Angelina_Jolie [31]
3 years ago
6

1. Find the distance between each pair of points. Round your answer to

Mathematics
1 answer:
zlopas [31]3 years ago
7 0

Step-by-step explanation:

\sqrt{(3 - ( - 4))^{2}  + ( - 7 - 6)^{2} }  \\  =  \sqrt{(3 + 4)^{2}  +  {( - 13)}^{2} }  \\  =   \sqrt{ 49 + 169}  \\   = \sqrt{218} \\  = 14.7648

You might be interested in
What's the ratio 48:30
Vladimir79 [104]
24:15 would be the simplified version, if that's what you meant.
7 0
3 years ago
Find the 12th term of an AP of the form 7, 12, 17, 22
ikadub [295]
Answer: 62

Step-by-Step Explanation:

First Term (a) = 7
Common Difference (d) = 12 - 7 = 5
Term to Find (n) = 12th

Therefore, finding the 12th Term :-
=> a+(n-1)d
= 7 + (12 - 1)5
= 7 + (11)5
= 7 + 55
=> 62

Hence, 12th Term of this AP is 62
4 0
2 years ago
Read 2 more answers
Cho tam giác ABC vuông tại C, biết : Góc A = 50 độ. Tính góc B
chubhunter [2.5K]

Answer:

Tổng 3 góc trong 1 tam giác là 180 độ

Vậy góc B = 180 - A - C = 180 - 90 - 50 = 40 độ

8 0
2 years ago
Read 2 more answers
Suppose X, Y, and Z are random variables with the joint density function f(x, y, z) = Ce−(0.5x + 0.2y + 0.1z) if x ≥ 0, y ≥ 0, z
dexar [7]

Answer:

The value of the constant C is 0.01 .

Step-by-step explanation:

Given:

Suppose X, Y, and Z are random variables with the joint density function,

f(x,y,z) = \left \{ {{Ce^{-(0.5x + 0.2y + 0.1z)}; x,y,z\geq0  } \atop {0}; Otherwise} \right.

The value of constant C can be obtained as:

\int_x( {\int_y( {\int_z {f(x,y,z)} \, dz }) \, dy }) \, dx = 1

\int\limits^\infty_0 ({\int\limits^\infty_0 ({\int\limits^\infty_0 {Ce^{-(0.5x + 0.2y + 0.1z)} } \, dz }) \, dy } )\, dx = 1

C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y }(\int\limits^\infty_0 {e^{-0.1z} } \, dz  }) \, dy  }) \, dx = 1

C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0{e^{-0.2y}([\frac{-e^{-0.1z} }{0.1} ]\limits^\infty__0 }) \, dy  }) \, dx = 1

C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}([\frac{-e^{-0.1(\infty)} }{0.1}+\frac{e^{-0.1(0)} }{0.1} ])  } \, dy  }) \, dx = 1

C\int\limits^\infty_0 {e^{-0.5x}(\int\limits^\infty_0 {e^{-0.2y}[0+\frac{1}{0.1}]  } \, dy  }) \, dx =1

10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2y} }{0.2}]^\infty__0  }) \, dx = 1

10C\int\limits^\infty_0 {e^{-0.5x}([\frac{-e^{-0.2(\infty)} }{0.2}+\frac{e^{-0.2(0)} }{0.2}]   } \, dx = 1

10C\int\limits^\infty_0 {e^{-0.5x}[0+\frac{1}{0.2}]  } \, dx = 1

50C([\frac{-e^{-0.5x} }{0.5}]^\infty__0}) = 1

50C[\frac{-e^{-0.5(\infty)} }{0.5} + \frac{-0.5(0)}{0.5}] =1

50C[0+\frac{1}{0.5} ] =1

100C = 1 ⇒ C = \frac{1}{100}

C = 0.01

3 0
3 years ago
What is the probabibility of rolling a sum of 10 when rolling two number cubes?
Alja [10]

Answer: 1 over 12

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • Here comes one more from me :<br> 0,0,0,3,20,115,__.<br> next number?
    15·1 answer
  • Can someone solve this Y=1/3x+5 on a graph
    8·2 answers
  • How do you simplify √x13??
    15·2 answers
  • Georgette created a factor tree and wrote the prime factorization of 72 shown here. A factor tree of 72. 72 branches to 8 and 9.
    11·1 answer
  • Por favor me ajudem
    7·1 answer
  • Given f(2) = 12, which of the following could be an equation of the function?
    7·1 answer
  • How do I find the triangles similarity and each length
    6·1 answer
  • Helllllpppppppppp idk what it issssss
    15·1 answer
  • Find the value of x.<br> x= 2.<br> x= 3<br> x= 33<br> x= 52
    9·2 answers
  • What are the terms in the expression 13y + 4p + 11?<br> A.17y + P<br> B.13y, 4p, 11<br> C.13, 4, 11
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!