Answer:
poor barney he was a good dinosaur , he became broke now he is selling fruits 3[
Step-by-step explanation:
The measure of the supplement angle is 63°
Step-by-step explanation:
If two angles are supplementary then the sum of their measures is 180°
The given is:
- Two supplementary angles
- One of them is 9 less than twice its supplement
We need to find the measure of the supplement
∵ The two angles are supplementary
∴ The sum of their measure is 180°
Assume that the measure of the supplement angle is x°
∵ An angle is 9 less than twice its supplement
- twice means times 2 and 9 less means subtract 9
∵ The measure of the supplement is x°
∴ The measure of the angle = (2x - 9)°
∵ The sume of the measures of the two angles = 180°
∴ (2x - 9)° + x° = 180°
- Add like terms
∴ (2x + x) - 9 = 180
∴ 3x - 9 = 180
- Add 9 to both sides
∴ 3x = 189
- Divide both sides by 3
∴ x = 63°
The measure of the supplement angle is 63°
Learn more:
You can learn more about supplementary angles in brainly.com/question/11175936
#LearnwithBrainly
Answer:
Did you still need the answers? If so, I can put them in the comments of this answer.
Answer:
Step-by-step explanation:
Hello!
To compete in the touch screen phone market a manufacturer aims to release a new touch screen with a battery life said to last more than two hours longer than the leading product which is the desired feature in phones.
To test this claim two samples were taken:
Sample 1
X: battery lifespan of a unit of the new product (min)
n= 93 units of the new product
mean battery life X[bar]= 8:53hs= 533min
S= 84 min
Sample 2
X: battery lifespan of a unit of the leading product (min)
n= 102 units of the leading product
mean battery life X[bar]= 5:40 hs = 340min
S= 93 min
The population variances of both variances are unknown and distinct.
To test if the average battery life of the new product is greater than the average battery life of the leading product by 2 hs (or 120 min) the parameters of interest will be the two population means and we will test their difference, the hypotheses are:
H₀: μ₁ - μ₂ ≤ 120
H₁: μ₁ - μ₂ > 120
Considering that there is not enough information about the distribution of both variables, but both samples are big enough, we can apply the central limit theorem and approximate the distribution of both sample means to normal, this way we can use the standard normal:
![Z= \frac{(X[bar]_1-X[bar]_2)-(Mu_1-Mu_2)}{\sqrt{\frac{S_1^2}{n_1} +\frac{S_2^2}{n_2} } }](https://tex.z-dn.net/?f=Z%3D%20%5Cfrac%7B%28X%5Bbar%5D_1-X%5Bbar%5D_2%29-%28Mu_1-Mu_2%29%7D%7B%5Csqrt%7B%5Cfrac%7BS_1%5E2%7D%7Bn_1%7D%20%2B%5Cfrac%7BS_2%5E2%7D%7Bn_2%7D%20%20%7D%20%7D)
Z≈N(0;1)

I hope this helps!
Answer:
Step-by-step explanation:
se the graph to determine the input values that
correspond with f(x) = 1.
O x=4
O x= 1 and x = 4
O x= -7 and x = 4
O x= -7 and x = 2
6.
(-6, 4)
4
(1,4)
w
2
(-7, 1)
(2, 1) x
2
4
-8/ -6 -4 -2
-2
-4