Answer:
Natalie bought 500 apples at $0.40 each, then she pays $0.40 500 times, this means that the total cost of the 500 apples is:
Cost = 500*$0.40 = $200
Now she threw away n apples from the 500 apples, then the number of apples that she has now is:
apples = 500 - n
And she sells the remaining apples for $0.70 each.
a) The amount that she gets by selling the apples is:
Revenue = (500 - n)*$0.70
b) We know that she did not make a loss, then the revenue must be larger than the cost, this means that:
cost ≤ revenue
$200 ≤ (500 - n)*$0.70
c) We need to solve the inequality for n.
$200 ≤ (500 - n)*$0.70
$200/$0.70 ≤ (500 - n)
285.7 ≤ 500 - n
n + 285.7 ≤ 500
n ≤ 500 - 285.7
n ≤ 214.3
Then the maximum value of n must be equal or smaller than 214.3
And n is a whole number, then we can conclude that the maximum number of rotten apples can be 214.
Congruent triangle are the same shape and same size exactly
<span>( 5, 2) and ( 6, 4)
slope m = (4-2)/(6-5) = 2
y = mx + b
b = y - mx
b = 2 - 2(5)
b = 2 - 10
b = -8
so now you have slope m = 2 and y intercept b = -8
equation
y = 2x - 8
answer
</span><span>a. y = 2x - 8</span>
To get the extrema, derive the function.
You get y' = 2x^-1/3 - 2.
Set this equal to zero, and you get x=0 as the location of a critical point.
Since you are on a closed interval [-1, 1], those points can also have an extrema.
Your min is right, but the max isn't at (1,1). At x=-1, you get y=5 (y = 3(-1)^2/3 -2(-1); (-1)^2/3 = 1, not -1).
Thus, the maximum is at (-1, 5).
Answer:
350
Step-by-step explanation:
Nearest hundred: 300
Nearest whole number: 350
Hope this helped!