Answer:
Bottom left (each term in pattern X is 1/3...)
Step-by-step explanation:
If you look at the 2nd row, you will recognize that when you multiply 15 times 1/3, you will get 5, which is 1/3 of 15. You will recognize this pattern across the whole table.
Step-by-step explanation:
6x50
=300÷10
=30
Mark me brainliest !!!
The points you found are the vertices of the feasible region. I agree with the first three points you got. However, the last point should be (25/11, 35/11). This point is at the of the intersection of the two lines 8x-y = 15 and 3x+y = 10
So the four vertex points are:
(1,9)
(1,7)
(3,9)
(25/11, 35/11)
Plug each of those points, one at a time, into the objective function z = 7x+2y. The goal is to find the largest value of z
------------------
Plug in (x,y) = (1,9)
z = 7x+2y
z = 7(1)+2(9)
z = 7+18
z = 25
We'll use this value later.
So let's call it A. Let A = 25
Plug in (x,y) = (1,7)
z = 7x+2y
z = 7(1)+2(7)
z = 7+14
z = 21
Call this value B = 21 so we can refer to it later
Plug in (x,y) = (3,9)
z = 7x+2y
z = 7(3)+2(9)
z = 21+18
z = 39
Let C = 39 so we can use it later
Finally, plug in (x,y) = (25/11, 35/11)
z = 7x+2y
z = 7(25/11)+2(35/11)
z = 175/11 + 70/11
z = 245/11
z = 22.2727 which is approximate
Let D = 22.2727
------------------
In summary, we found
A = 25
B = 21
C = 39
D = 22.2727
The value C = 39 is the largest of the four results. This value corresponded to (x,y) = (3,9)
Therefore the max value of z is z = 39 and it happens when (x,y) = (3,9)
------------------
Final Answer: 39
Answer:
The sample mean is
b.3.55
The margin of error is
0.32
Step-by-step explanation:
Deep explanation about a confidence interval
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find M as such

In which
is the standard deviation of the population and n is the size of the sample.

The lower end of the interval is the mean subtracted by M. So it is 6.4 - 0.3944 = 6.01 hours.
The upper end of the interval is the mean added to M. So it is 6.4 + 0.3944 = 6.74 hours.
In this problem:
The deep explanation is not that important.
We just have to recognize that the interval has a lower end and an upper end. The distance from both the upper and the lower end to the mean is M. This means that the sample mean is the halfway point between the lower end and the upper end.
The margin of error is the distance of these two points(lower and upper end) to the mean.
In our interval
Lower end: 3.23
Upper end: 3.87
Sample mean

So the correct answer is:
b.3.55
The margin of error is
3.87 - 3.55 = 3.55 - 3.23 = 0.32
Answer:

Step-by-step explanation:
![\sqrt[3]{2x^5y^7} * \sqrt[3]{4x^4y^2} \\\\2x^3y^3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%5E5y%5E7%7D%20%2A%20%5Csqrt%5B3%5D%7B4x%5E4y%5E2%7D%20%5C%5C%5C%5C2x%5E3y%5E3)