I think it’s 54
Good luckkk
pretty much about the same as before.
a = weight of a large box
b = weight of a small box.
we know their combined weight is 65 lbs, thus a + b = 65.
we also know that the truck has 60 large ones, and 55 small ones, thus 60*a is the total weight for the large ones and 55*b is the total weight for the small ones, and we know that is a total of 3775, 60a + 55b = 3775.

5/6 - 3/8
Rewrite the fractions to have a common denominator:
5/6 x 4 = 20/24
3/8 x 3 = 9/24
Now you have 20/24 - 9/24 = 11/24
The answer is D. 11/24
Answer:
Your answer is 15, 100% of the exam is 15 questions.
Step-by-step explanation:
60% x ? = 9
We need to do 9 divided by 60%
Which is actually 9 divided by 60/100.
Which is equal to; (100 x 9) divided by 6.
Which is then 900 divided by 60 which equals 15.
Answer: 15
<em>Answer</em><em>:</em><em> </em><em>3</em><em>7</em>
<em>Step</em><em> </em><em>by</em><em> </em><em>step</em><em> </em><em>explanation</em><em>:</em>
<em>y</em><em>+</em><em>2</em><em>9</em><em>+</em><em>4</em><em>0</em><em>+</em><em>2</em><em>y</em><em>=</em><em>1</em><em>8</em><em>0</em><em>°</em><em>(</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>angle</em><em> </em><em>in</em><em> </em><em>stra</em><em>ight</em><em> </em><em>line</em><em>)</em>
<em>or</em><em>,</em><em> </em><em>y</em><em>+</em><em>2</em><em>y</em><em>+</em><em>2</em><em>9</em><em>+</em><em>4</em><em>0</em><em>=</em><em>1</em><em>8</em><em>0</em><em>°</em>
<em>or</em><em>,</em><em>3</em><em>y</em><em>+</em><em>6</em><em>9</em><em>=</em><em>1</em><em>8</em><em>0</em>
<em>or</em><em>,</em><em>3</em><em>y</em><em>=</em><em>1</em><em>8</em><em>0</em><em>-</em><em>6</em><em>9</em>
<em>or</em><em>,</em><em>3</em><em>y</em><em>=</em><em>1</em><em>1</em><em>1</em>
<em>or</em><em>,</em><em>y</em><em>=</em><em>1</em><em>1</em><em>1</em><em>/</em><em>3</em>
<em>y</em><em>=</em><em>3</em><em>7</em>
<em>hope</em><em> </em><em>it</em><em> </em><em>helps</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em>