Alice has read 150 pages, you would multiple 200 by .75 (75%). If Nina had read 50% of her book and she read 150, you multiple by 2, and get 300. So Nina has 300 pages in her book.

From Left side:


NOTE: sin²θ + cos²θ = 1






Left side = Right side <em>so proof is complete</em>
Answer:
With a .95 probability, the sample size that needs to be taken if the desired margin of error is .04 or less is of at least 216.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
The margin of error:

For this problem, we have that:

95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
With a .95 probability, the sample size that needs to be taken if the desired margin of error is .04 or less is
We need a sample size of at least n, in which n is found M = 0.04.







With a .95 probability, the sample size that needs to be taken if the desired margin of error is .04 or less is of at least 216.
Answer : 96
x – y = 16 --------> equation 1
1/8 x + 1/2 y = 52
x is the higher grade and y is the lower grade
We solve the first equation for y
x - y = 16
-y = 16 -x ( divide each term by -1)
y = -16 + x
Now substitute y in second equation
1/8 x + 1/2 ( -16 + x ) = 52
1/8x - 8 + 1/2 x = 52
1/8x + 1/2x - 8 = 52
Take common denominator to combine fractions
1/8x + 4/8x -8 = 52
5/8x - 8 = 52
Add 8 on both sides
5/8x = 60
Multiply both sides by 8/5
x = 96
We know x is the higher grade
96 is the higher grade of Jose’s two tests.
The first one is 32m^15n^10
The second one is:
(h^12/h^4)^5
(h^6/h)^5
h^30/h^5
h^25/h
Hope this helps :)