Answer:
ΔABC and ΔXYZ are SIMILAR by SSS property of similarity.
Step-by-step explanation:
SSS Similarity Theorem:
Two triangles are said to be similar if their CORRESPONDING SIDES are proportional.
In ΔABC and ΔXYZ, if
, then △ABC∼△YZX
Here, in ΔABC and ΔXYZ
AB = 9, BC = x , AC = 12
Similarly, XY = 3, YZ = 2, ZX = 4
Here,
![\frac{AB}{XY} = \frac{9}{3} = 3\\\frac{BC}{YZ} = \frac{x}{2} \\\frac{Ac}{Xz} = \frac{12}{4} = 3](https://tex.z-dn.net/?f=%5Cfrac%7BAB%7D%7BXY%7D%20%3D%20%5Cfrac%7B9%7D%7B3%7D%20%20%3D%203%5C%5C%5Cfrac%7BBC%7D%7BYZ%7D%20%3D%20%5Cfrac%7Bx%7D%7B2%7D%20%5C%5C%5Cfrac%7BAc%7D%7BXz%7D%20%3D%20%5Cfrac%7B12%7D%7B4%7D%20%20%3D%203)
⇒ Corresponding sides are in the ratio of 3, if BC =6 units
Hence, if BC = 6 units, then the ΔABC and ΔXYZ are SIMILAR by SSS property of similarity.
Answer:
parallel
Step-by-step explanation:
find the slope of each line
Line 1 (5-2)/(-4-2) = 3/-6 =-1/2
Line 2 (-4--9)/(-6-4)= 5/-10 = -1/2
Answer:
Step-by-step explanation:
x²+7x-11=-5x+6
x²+7x+5x-11-6=0
x²+12x-17=0
![x=\frac{-12\pm \sqrt{12^2-4*1*(-17)} }{2*1} \\=\frac{-12 \pm \sqrt{144+68} }{2} \\=\frac{-12 \pm \sqrt{212}}{2} \\=\frac{-12+2\sqrt{53}}{2}\\=-6 \pm \sqrt{53}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-12%5Cpm%20%5Csqrt%7B12%5E2-4%2A1%2A%28-17%29%7D%20%7D%7B2%2A1%7D%20%5C%5C%3D%5Cfrac%7B-12%20%5Cpm%20%5Csqrt%7B144%2B68%7D%20%7D%7B2%7D%20%5C%5C%3D%5Cfrac%7B-12%20%5Cpm%20%5Csqrt%7B212%7D%7D%7B2%7D%20%5C%5C%3D%5Cfrac%7B-12%2B2%5Csqrt%7B53%7D%7D%7B2%7D%5C%5C%3D-6%20%5Cpm%20%5Csqrt%7B53%7D)
Answer:
None
Step-by-step explanation:
Because the 3 angles do not add up to 180 degrees.