This is the best I got Require to make 2 equations with the same repeating part and subtract them to eliminate the repeating part.
begin by letting x = 0.5555555................. (1)
To obtain the same repeating part after the decimal point need to multiply by 10
hence 10x = 5.555555........................(2)
It is important to obtain 2 equations in x, where the recurring part after the decimal points are exactly the same.
now subtract (1) from (2) to obtain fraction
(2) - (1) : <span>9x=5⇒x=<span><span>59</span></span></span>
Answer:
1/4 of the times
Step-by-step explanation:
because there are 4 sections, that means that there is a 1/4 probability.
Answer:
4p^3 (4p + 1)
Step-by-step explanation:
All we can do with this equation is factor it.
16p^4 + 4p^3
When we look at the coefficients, there is a common factor of 4 with 16 and 4. The p's are also common factors, and we can take out a common factor of x^3. We can combine these common factors and take them out of the equation at the same time.
4p^3 (4p + 1)
Answer:
a)= 2
b) 6.324
c) P= 0.1217
Step-by-step explanation:
a) The mean of the sampling distribution of X`1- X`2 denoted by ux`-x` = u1-u2 is equal to the difference between population means i.e = 2 ( given in the question)
b) The standard deviation of the sampling distribution of X`1- X`2 ( standard error of X`1- X`2) denoted by σ_X`1- X`2 is given by
σ_X`1- X`2 = √σ²/n1 +σ²/n2
Var ( X`1- X`2) = Var X`1 + Var X`2 = σ²/n1 +σ²/n2
so
σ_X`1- X`2 =√20 +20 = 6.324
if the populations are normal the sampling distribution X`1- X`2 , regardless of sample sizes , will be normal with mean u1-u2 and variance σ²/n1 +σ²/n2.
Where as Z is normally distributed with mean zero and unit variance.
If we take X`1- X`2= 0 and u1-u2= 2 and standard deviation of the sampling distribution = 6.324 then
Z= 0-2/ 6.342= -0.31625
P(-0.31625<z<0)= 0.1217
The probability would be 0.1217