<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>6</em><em>5</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>G</em><em>ood</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
<em>~</em><em>p</em><em>r</em><em>ã</em><em>g</em><em>y</em><em>â</em>
Answer: 2 can go into 120 60 times.
Step-by-step explanation:
120/2 = 60
Answer:
x=3
Step-by-step explanation:
3+4=7
3x7=21
Answer:
0.3085 = 30.85% probability that the next car will be traveling less than 59 miles per hour.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

Calculate the probability that the next car will be traveling less than 59 miles per hour.
This is the pvalue of Z when X = 59. So



has a pvalue of 0.3085
0.3085 = 30.85% probability that the next car will be traveling less than 59 miles per hour.
100% of the people present would be 60.