Let the lengths of the sides of the rectangle be x and y. Then A(Area) = xy and 2(x+y)=300. You can use substitution to make one equation that gives A in terms of either x or y instead of both.
2(x+y) = 300
x+y = 150
y = 150-x
A=x(150-x) <--(substitution)
The resulting equation is a quadratic equation that is concave down, so it has an absolute maximum. The x value of this maximum is going to be halfway between the zeroes of the function. The zeroes of the function can be found by setting A equal to 0:
0=x(150-x)
x=0, 150
So halfway between the zeroes is 75. Plug this into the quadratic equation to find the maximum area.
A=75(150-75)
A=75*75
A=5625
So the maximum area that can be enclosed is 5625 square feet.
Answer:
The quotient is 
Step-by-step explanation:
The given polynomial division is 
To perform the synthetic division we write out the coefficients and arrange them as shown.
1 -4 4 -1
<u>1 | 1 -3 1</u>
1 -3 1 0
The quotient is 
The descending powers of x means from highest degree to the least
The remainder is 0
Answer:
y = .5x+30
Step-by-step explanation:

<em>hope this helps, good luck :)</em>
>
the answer is “>” because 12.312 is greater than 12.132
Sqrt18 = 3 sqrt2
sqrt 8 = 2 sqrt2
sqrt18 / sqrt 8 = 3 sqrt2 / 2 sqrt2 = 3/2 answer