D. 2- youre adding two negative charges to a neutral element
Answer:
The change in POP can not be reversed hence it is a chemical change.
Explanation:
Plaster of Paris (POP) is used to immobilize a fractured bone. The POP sets when water is added to it, it hardens irreversibly. Once it hardens, its shape can not be changed by any physical means. This means that the hardening of POP is a chemical change.
The chemical name of plaster of Paris is calcium sulfate hemihydrate. The setting of POP is an example of a chemical reaction.
Answer:
41.3 °C
Explanation:
From the question given above, the following data were obtained:
Mass (M) of water = 27.56 g
Heat (Q) loss = 2443 J
Final temperature (T2) = 62.5 °C
Initial temperature (T1) =?
NOTE: The specific heat capacity (C) of water is 4.18 J/g°C
Thus, we can obtain the initial temperature of the water by using the following formula:
Q = MC(T2 – T1)
2443 = 27.56 × 4.18 (62.5 – T1)
2443 = 115.2008 (62.5 – T1)
Divide both side by 115.2008
2443 / 115.2008 = (62.5 – T1)
21.20645 = 62.5 – T1
Collect like terms
21.20645 – 62.5 = – T1
– 41.3 = – T1
Divide both side by – 1
– 41.3 /– 1= – T1 / –1
41.3 = T1
T1 = 41.3 °C
Thus, the initial temperature of the water was 41.3 °C
Answer:
Carbon dioxide is an atmospheric constituent that plays several vital roles in the environment. It is a greenhouse gas that traps infrared radiation heat in the atmosphere. It plays a crucial role in the weathering of rocks. ... It is stored in biomass, organic matter in sediments, and in carbonate rocks like limestone.
Explanation:
Answer:
You can fill 212 balloons.
Explanation:
First we <u>calculate the helium moles in the small cylinder</u>, using <em>PV=nRT:</em>
- P = 14300 kPa ⇒ 14300 * 0.009869 = 141.13 atm
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 25 °C ⇒ 25 + 273.16 = 298.16 K
141.13 atm * 2.20 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 298.16 K
Then we <u>calculate the number of moles that can fit in a single balloon</u>:
- 1.22 atm * 1.20 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 298.16 K
Finally we <u>divide the total number of available moles by the number of moles in a single balloon</u>:
- 12.70 mol / 0.0599 mol = 212.09
So the answer is that you can fill 212 balloons.