The population function of the Western Lowland Gorillas can either represent population growth or population decay
<h3>How to model the population</h3>
The question is incomplete, as the resources to model the population of the Western Lowland Gorillas are not given.
So, I will give a general explanation to solve the question
A population function can be represented as:

Where:
- The initial population of the Western Lowland Gorillas is represented by (a)
- The rate at which the population changes is represented by (r)
- The number of years since 2022 is represented by (x)
- The population in x years is represented by (y)
From the question, we understand that the population of the Western Lowland Gorillas decreases.
This means that the rate of the function would be an exponential decay i.e. 1 -r
Take for instance:

By comparison.
a = 2000 and 1 - r = 0.98
The above function can be used to model the population of the Western Lowland Gorillas
Read more about exponential functions at:
brainly.com/question/26829092
Answer:
This study uses random sampling
This study uses a control group
This study uses a repeated measures design
Answer:
Step-by-step explanation: Hey for the second one I got y = -3/4x -0.5 I'm not sure if its correct though sorry if not
ill try my best to explain my solution though
1. From the parallel equation (3x + 4y = 12) all we need to do is find the slope
So the easiest way to do so is to put the said equation in <u>y-intercept </u>form
y=mx +b
m= slope
b= y intercept
so 1. 3x + 4y = 12
=
4y = 12-3x
divide that by 4 to get only y
y=3-3/4x
-3/4 is our slope
y=-3/4x+b
than we have a point -2, -2
if we put -2 for y
-2=-3/4x+b
and then we put our -2 for x
-2 = -3/4 * -2 + b
=
-2 = -1.5 +b
b=-0.5
Answer : y=-3/4x-0.5
They are balanced more evenly than other shapes
Answer:
I think that the first one is not a rhombus but the last two are.