All four angles are exterior angles of the quadrilateral.
We know that the sum of exterior angles of any polygon is 360 ° .
So we can add together the four angles and solve for x:
(x+16)+(3x-1)+6x+5x = 360
15x+15=360
15x=345
x=345/15=23 °
1/3 + 1/6
---Find a common denominator, or the least common multiple of the given denominators. In this case, that would be 6.
1/3 = 2/6
1/6 = 1/6
---Now add the fractions
2/6 + 1/6
3/6
---Simplify/Reduce the fraction
3/6
1/2
Answer: 1/2
1/3 + 1/6 = 2/6 + 1/6 = 3/6 (or 1/2)
Hope this helps!
Answer:
C.13
Step-by-step explanation:
Answer:

Step-by-step explanation:
We want to find the Riemann sum for
with n = 6, using left endpoints.
The Left Riemann Sum uses the left endpoints of a sub-interval:

where
.
Step 1: Find 
We have that 
Therefore, 
Step 2: Divide the interval
into n = 6 sub-intervals of length 
![a=\left[0, \frac{\pi}{8}\right], \left[\frac{\pi}{8}, \frac{\pi}{4}\right], \left[\frac{\pi}{4}, \frac{3 \pi}{8}\right], \left[\frac{3 \pi}{8}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{5 \pi}{8}\right], \left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]=b](https://tex.z-dn.net/?f=a%3D%5Cleft%5B0%2C%20%5Cfrac%7B%5Cpi%7D%7B8%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B%5Cpi%7D%7B8%7D%2C%20%5Cfrac%7B%5Cpi%7D%7B4%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B%5Cpi%7D%7B4%7D%2C%20%5Cfrac%7B3%20%5Cpi%7D%7B8%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B3%20%5Cpi%7D%7B8%7D%2C%20%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B%5Cpi%7D%7B2%7D%2C%20%5Cfrac%7B5%20%5Cpi%7D%7B8%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B5%20%5Cpi%7D%7B8%7D%2C%20%5Cfrac%7B3%20%5Cpi%7D%7B4%7D%5Cright%5D%3Db)
Step 3: Evaluate the function at the left endpoints






Step 4: Apply the Left Riemann Sum formula


Answer:
let
tp=total points lost
l= points lost
q= question
tp=24
l= 3
if l= 3 and tp= 24 den q= tp÷l
24÷3=8