Answer:
The slope of a line parallel to this line will be: -7/9
The slope of the perpendicular line will be:

Step-by-step explanation:
We know the slope-intercept form

Here,
Given the equation

simplifying to write in the lope-intercept form

Thus, the slope of the line is: -7/9
The slope of a line parallel to the line:
We have already determined that the slope of the line is: -7/9
- We know that the parallel lines have the same slope.
Thus, the slope of a line parallel to this line will be: -7/9
The slope of a line perpendicular to the line:
We have already determined that the slope of the line is: -7/9
As we know that the slope of the perpendicular line is basically the negative reciprocal of the slope of the line.
Thus, the slope of the perpendicular line will be:

Answer:
4.99
Step-by-step explanation:
If you divide:
$24.95/5bulbs
you get
4.99/1 bulb
62 words per minute. You would divide 8 from 496 since you need to find out how many words he can type in a minute. Your answer is 62 words per minute.
Hope this helped! :)
The question is defective, or at least is trying to lead you down the primrose path.
The function is linear, so the rate of change is the same no matter what interval (section) of it you're looking at.
The "rate of change" is just the slope of the function in the section. That's
(change in f(x) ) / (change in 'x') between the ends of the section.
In Section A:Length of the section = (1 - 0) = 1f(1) = 5f(0) = 0change in the value of the function = (5 - 0) = 5Rate of change = (change in the value of the function) / (size of the section) = 5/1 = 5
In Section B:Length of the section = (3 - 2) = 1 f(3) = 15f(2) = 10change in the value of the function = (15 - 10) = 5Rate of change = (change in the value of the function) / (size of the section) = 5/1 = 5
Part A:The average rate of change of each section is 5.
Part B:The average rate of change of Section B is equal to the average rate of change of Section A.
Explanation:The average rates of change in every section are equalbecause the function is linear, its graph is a straight line,and the rate of change is just the slope of the graph.