Using derivatives, it is found that:
i) 
ii) 9 m/s.
iii) 
iv) 6 m/s².
v) 1 second.
<h3>What is the role of derivatives in the relation between acceleration, velocity and position?</h3>
- The velocity is the derivative of the position.
- The acceleration is the derivative of the velocity.
In this problem, the position is:

item i:
Velocity is the <u>derivative of the position</u>, hence:

Item ii:

The speed is of 9 m/s.
Item iii:
Derivative of the velocity, hence:

Item iv:

The acceleration is of 6 m/s².
Item v:
t for which a(t) = 0, hence:




Hence 1 second.
You can learn more about derivatives at brainly.com/question/14800626
Answer:
33297327
Step-by-step explanation:
(15267 * 15267) ÷ 7
= 15267 * 15267
= 233081289 ÷ 7
= 33297327
Hope this helps! :)
With a given parallel line and a given point on the line
we can use the point-line method: y-y0=m(x-x0)
where
y=mx+k is the given line, and
(x0,y0) is the given point.
Here
m=-10, k=-5, (x0,y0)=(-3,5)
=> the required line L is given by:
L: y-5=-10(x-(-3))
on simplification
L: y=-10x-30+5
L: y=-10x-25
Answer:
208
Step-by-step explanation: