Answer:

Explanation:
First, the instant associated to the angular displacement is:

Roots of the second-order polynomial are:

Only the first root is physically reasonable.
The angular velocity is obtained by deriving the angular displacement function:


The angular acceleration is obtained by deriving the previous function:

The resultant linear acceleration on the rim of the disk is:






A)they can interbreed and produce fertile offsprings
The decrease in energy in the hydrogen molecule is what allows its formation on Earth, but in stars the great energy of the explosion has a kinetic energy so great that electrons cannot bind to another atom, which is why hydrogen has a single atom.
The hydrogen molecule is a form that two hydrogen atoms share their electrons decreasing the total energy of the molecule, this bond has a covalent and hydrogen bonding characteristic.
In a stellar explosion, the energy released increases the energy of the hydrogen atom, for which we have two possibilities:
- Its electron is lost, so we are in a single proton, in the case of structures where the proton and the elector are
- The hydrogen atom remains but the energy of the atom is very high so the kinetic energy of the electron prevents the electron from being shared by the other atom and the molecule cannot be formed.
When the atoms are thrown into space, the separation between them is so high that it does not allow electrons to be shared and molecules cannot be formed either.
In conclusion, the decrease in energy in the hydrogen molecule is what allows its formation on Earth, but in stars the great energy of the explosion has a kinetic energy so great that electrons cannot join another atom, which is why the hydrogen has only one atom.
Learn more about the Hydrogen atom here:
brainly.com/question/22464200
The energy of a light wave is calculated using the formula
E = hc/λ
h is the Planck's constant
c is the speed of light
λ is the wavelength
For the ir-c, the range is
<span>6.63 x 10^-34 (3x10^8) / 3000 = 6.63 x 10 ^-29 J
</span>6.63 x 10^-34 (3x10^8) / 1000000 = 1.99 x 10^-31 J
For the ir-a, the range is
6.63 x 10^-34 (3x10^8) / 700 = 2.84 x 10^-28 J
6.63 x 10^-34 (3x10^8) / 1400 = 1.42 x 10^-28 J
Answer:
La presión neumática para levantar un automóvil de 17,640 newtons es 220,500 pascales.
Explanation:
Asumiendo que la presión (
), medida en pascales, tiene una distribución uniforme sobre la superficie del pistón, se calcula a partir de la siguiente expresion:

Donde:
- Fuerza motriz, medida en newtons.
- Área del pistón, medida en metros cuadrados.
La fuerza motriz es equivalente al peso del automóvil. El área del pistón (
), medido en metros cuadrados, es determinado por:

Donde
es el diámetro del pistón, medido en metros.
Si
y
, entonces la presión neumática es:




La presión neumática para levantar un automóvil de 17,640 newtons es 220,500 pascales.