We already know the formula:
Voltage = Current * Resistance
In the given question, there are numerous information's that are already given.
Current = 6.2 A
Resistance = 18 ohms
Then
Voltage = 6.2 * 18 Volts
= 111.6 Volt
So, the voltage in the circuit will be 111.6 volts. I hope it helps you.
According to Newton's second law, the resultant of the forces acting on the box is equal to the product between its mass and its acceleration:

(1)
we are only concerned about the horizontal direction, so there are only two forces acting on the box in this direction:
- the horizontal component of the force exerted by the rope, which is equal to

- the frictional force, acting in the opposite direction, which is equal to

By applying Newton's law (1), we can calculate the acceleration of the box:

The period of a simple pendulum is given by:

where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:

(1)
We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.
We know it makes N=441 oscillations in t=1090 s, therefore its frequency is

And its period is the reciprocal of its frequency:

So now we can use eq.(1) to find the gravitational acceleration of the planet: