<span>Assuming the graph is y=-3(√2x)-4 and y=-3√(x-4) the transformation would be:
</span><span>The graph is compressed horizontally by a factor of 2
x=1/2x'
</span>y=-3(√2x)-4
y=-3(√x')-4 <span>
</span><span>moved left 4
x=x'-4
</span>y=-3(√x)-4
y=-3(√x'-4)-4
<span>
moved down 4
y=y'-4
</span>y=-3(√x-4)-4
y'-4=-3(√x'-4)-4
y'=-3(√x'-4)-4 +4
y'=-3(√x'-4)
Answer: C. <span>The graph is compressed horizontally by a factor of 2, moved left 4, and moved down 4.
</span>
Answer:
- m∠A ≈ 53.13°
- m∠B ≈ 73.74°
- m∠C ≈ 53.13°
Step-by-step explanation:
An altitude to AC bisects it and creates two congruent right triangles. This lets you find ∠A = ∠C = arccos(6/10) ≈ 53.13°.
Since the sum of angles of a triangle is 180°, ∠B is the supplement of twice this angle, so is about 73.74°.
m∠A = m∠C ≈ 53.13°
m∠B ≈ 73.74°
_____
The mnemonic SOH CAH TOA reminds you of the relation between the adjacent side, hypotenuse, and trig function of an angle:
Cos = Adjacent/Hypotenuse
If the altitude from B bisects AC at X, triangle AXB is a right triangle with side AX adjacent to the angle A, and side AB as the hypotenuse. AX is half of AC, so has length 12/2 = 6, telling you the cosine of angle A is AX/AB = 6/10.
A diagram does not have to be sophisticated to be useful.
Answer:
20
Step-by-step explanation:
Answer:
x=1
Step-by-step explanation:
D. Is the answer if im wrong then you don't have to thank me