Answer:
Lets say that P(n) is true if n is a prime or a product of prime numbers. We want to show that P(n) is true for all n > 1.
The base case is n=2. P(2) is true because 2 is prime.
Now lets use the inductive hypothesis. Lets take a number n > 2, and we will assume that P(k) is true for any integer k such that 1 < k < n. We want to show that P(n) is true. We may assume that n is not prime, otherwise, P(n) would be trivially true. Since n is not prime, there exist positive integers a,b greater than 1 such that a*b = n. Note that 1 < a < n and 1 < b < n, thus P(a) and P(b) are true. Therefore there exists primes p1, ...., pj and pj+1, ..., pl such that
p1*p2*...*pj = a
pj+1*pj+2*...*pl = b
As a result
n = a*b = (p1*......*pj)*(pj+1*....*pl) = p1*....*pj*....pl
Since we could write n as a product of primes, then P(n) is also true. For strong induction, we conclude than P(n) is true for all integers greater than 1.
1. Given any triangle ABC with sides BC=a, AC=b and AB=c, the following are true :
i) the larger the angle, the larger the side in front of it, and the other way around as well. (Sine Law) Let a=20 in, then the largest angle is angle A.
ii) Given the measures of the sides of a triangle. Then the cosines of any of the angles can be found by the following formula:

2.

3. m(A) = Arccos(-0.641)≈130°,
4. Remark: We calculate Arccos with a scientific calculator or computer software unless it is one of the well known values, ex Arccos(0.5)=60°, Arccos(-0.5)=120° etc
Angle PQR=90 degrees.
cos 52=PQ/14.72
PQ=14.72 x (cos 52)
PQ= 9 cm to the nearest cm
Answer:
Distance =√(x₁ - y₁)²+ (x₂ - y₂)² = √97 = 9.85
Step-by-step explanation:
The Matrix X and Y could also be referred to as vectors in Rⁿ dimensions.
if Vector X = ( x₁ , x₂) and Vector Y = (y₁ , y₂)
then, Distance (X-Y) = ||X-Y|| = √(x₁ - y₁)²+ (x₂ - y₂)²
where, x₁ = 8, x₂ = -5 and y₁ = -1 , y₂ = -9
Distance = √(8 - (-1))²+ (-5 - (-9))² = √9² + 4² =√97 = 9.85
Answer:
<em>Any width less than 3 feet</em>
Step-by-step explanation:
<u>Inequalities</u>
The garden plot will have an area of less than 18 square feet. If L is the length of the garden plot and W is the width, the area is calculated by:
A = L.W
The first condition can be written as follows:
LW < 18
The length should be 3 feet longer than the width, thus:
L = W + 3
Substituting in the inequality:
(W + 3)W < 18
Operating and rearranging:

Factoring:
(W-3)(W+6)<0
Since W must be positive, the only restriction comes from:
W - 3 < 0
Or, equivalently:
W < 3
Since:
L = W + 3
W = L - 3
This means:
L - 3 < 3
L < 6
The width should be less than 3 feet and therefore the length will be less than 6 feet.
If the measures are whole numbers, the possible dimensions of the garden plot are:
W = 1 ft, L = 4 ft
W = 2 ft, L = 5 ft
Another solution would be (for non-integer numbers):
W = 2.5 ft, L = 5.5 ft
There are infinitely many possible combinations for W and L as real numbers.