Answer:
9x+1
Step-by-step explanation:
combine 2x+7x then add the 1
No, the trailer cannot hold the weight of the bricks. It is beyond the 900kg capacity of the trailer. The total weight of the bricks is 1,013.77 kilograms. The total weight was derived from getting the volume of the brick (0.051m x 0.102m x 0.203m), then multiplying the volume to the density of each brick (1.056 x 10^3m^3 x 1920kg/m^3). The weight of each brick is 2.03kg. Lastly, multiply the total number of bricks to the weight of each brick to get the total weight.
To round numbers to the nearest hundred thousand, make the numbers whose last five digits are 00001 through 49999 into the next lower number that ends in 00000. For example 6,424,985 rounded to the nearest hundred thousand would be 6,400,000.
An exterior angle is equal to the sum of the 2 non adjacent angles. In this case
100 = x + 70 Subtract 70
x = 100 - 70
x = 30
Answer:
Two imaginary solutions:
x₁= 
x₂ = 
Step-by-step explanation:
When we are given a quadratic equation of the form ax² +bx + c = 0, the discriminant is given by the formula b² - 4ac.
The discriminant gives us information on how the solutions of the equations will be.
- <u>If the discriminant is zero</u>, the equation will have only one solution and it will be real
- <u>If the discriminant is greater than zero</u>, then the equation will have two solutions and they both will be real.
- <u>If the discriminant is less than zero,</u> then the equation will have two imaginary solutions (in the complex numbers)
So now we will work with the equation given: 4x - 3x² = 10
First we will order the terms to make it look like a quadratic equation ax²+bx + c = 0
So:
4x - 3x² = 10
-3x² + 4x - 10 = 0 will be our equation
with this information we have that a = -3 b = 4 c = -10
And we will find the discriminant: 
Therefore our discriminant is less than zero and we know<u> that our equation will have two solutions in the complex numbers. </u>
To proceed to solve the equation we will use the general formula
x₁= (-b+√b²-4ac)/2a
so x₁ = 
The second solution x₂ = (-b-√b²-4ac)/2a
so x₂=
These are our two solutions in the imaginary numbers.