Answer:
Step 1 Eliminate fractions by multiplying all terms by the least common denominator of all fractions.
Step 2 Simplify by combining like terms on each side of the inequality.
Step 3 Add or subtract quantities to obtain the unknown on one side and the numbers on the other.
8 as that means what two of the same number makes up , in this case 64. 8x8=64
Answer:
The maximum height of the ferris wheel is 64 ft.
The radius of the ferris wheel is 30ft.
Step-by-step explanation:
i took the test :)
<h3>
Answer: (C) 8/30</h3>
===================================================
Explanation:
There are 5+3 = 8 people in choir and running club. I added the values in the overlapped region of the circles "choir" and "running club".
This is out of 2+5+6+7+3+4+3 = 30 people total.
Divide the two results to form the fraction 8/30
Ideally we should reduce to get 4/15, but your teacher has chosen not to reduce.
Find where the expression
x
−
5
x
2
−
25
x
-
5
x
2
-
25
is undefined.
x
=
−
5
,
x
=
5
x
=
-
5
,
x
=
5
Since
x
−
5
x
2
−
25
x
-
5
x
2
-
25
→
→
−
∞
-
∞
as
x
x
→
→
−
5
-
5
from the left and
x
−
5
x
2
−
25
x
-
5
x
2
-
25
→
→
∞
∞
as
x
x
→
→
−
5
-
5
from the right, then
x
=
−
5
x
=
-
5
is a vertical asymptote.
x
=
−
5
x
=
-
5
Consider the rational function
R
(
x
)
=
a
x
n
b
x
m
R
(
x
)
=
a
x
n
b
x
m
where
n
n
is the degree of the numerator and
m
m
is the degree of the denominator.
1. If
n
<
m
n
<
m
, then the x-axis,
y
=
0
y
=
0
, is the horizontal asymptote.
2. If
n
=
m
n
=
m
, then the horizontal asymptote is the line
y
=
a
b
y
=
a
b
.
3. If
n
>
m
n
>
m
, then there is no horizontal asymptote (there is an oblique asymptote).
Find
n
n
and
m
m
.
n
=
1
n
=
1
m
=
2
m
=
2
Since
n
<
m
n
<
m
, the x-axis,
y
=
0
y
=
0
, is the horizontal asymptote.
y
=
0
y
=
0
There is no oblique asymptote because the degree of the numerator is less than or equal to the degree of the denominator.
No Oblique Asymptotes
This is the set of all asymptotes.
Vertical Asymptotes:
x
=
−
5
x
=
-
5
Horizontal Asymptotes:
y
=
0
y
=
0
No Oblique Asymptotes