What kind of music do astronauts like?
Neptunes :)
Are you able to come with answers from there or do you need a little more help?
Answer:
100 miles
Step-by-step explanation:
We need to read the graph to determine the answer.
The input is 10 hours
Using the x, go up until you hit the red line and read the y value
The y value is 100 miles
Answer:(x-1)(x+8)
Step-by-step explanation: You need to set it up as (x+y)(x+z) format. To get that you need to flip the zeroes making them the opposite. So the answer in this case would be (x-1)(x+8).
You would divide 76 by 8. That would give you 9.5. Then you multiply by 10 and that gives you 95. Hope this helps (;
Answer:
The answer is 
Step-by-step explanation:
To calculate the volumen of the solid we solve the next double integral:

Solving:

![[6x^{2} ]{{1} \atop {0}} \right. * [\frac{y^{3}}{3}]{{1} \atop {0}} \right.](https://tex.z-dn.net/?f=%5B6x%5E%7B2%7D%20%5D%7B%7B1%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%2A%20%5B%5Cfrac%7By%5E%7B3%7D%7D%7B3%7D%5D%7B%7B1%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Replacing the limits:

The plane y=mx divides this volume in two equal parts. So volume of one part is 1.
Since m > 1, hence mx ≤ y ≤ 1, 0 ≤ x ≤ 
Solving the double integral with these new limits we have:

This part is a little bit tricky so let's solve the integral first for dy:
![\int\limits^\frac{1}{m}_0 [{12x \frac{y^{3}}{3}}]{{1} \atop {mx}} \right.\, dx =\int\limits^\frac{1}{m}_0 [{4x y^{3 }]{{1} \atop {mx}} \right.\, dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%5Cfrac%7B1%7D%7Bm%7D_0%20%5B%7B12x%20%5Cfrac%7By%5E%7B3%7D%7D%7B3%7D%7D%5D%7B%7B1%7D%20%5Catop%20%7Bmx%7D%7D%20%5Cright.%5C%2C%20dx%20%3D%5Cint%5Climits%5E%5Cfrac%7B1%7D%7Bm%7D_0%20%5B%7B4x%20y%5E%7B3%20%7D%5D%7B%7B1%7D%20%5Catop%20%7Bmx%7D%7D%20%5Cright.%5C%2C%20dx)
Replacing the limits:

Solving now for dx:
![[{\frac{4x^{2}}{2} -\frac{4m^{3} x^{5}}{5} ]{{\frac{1}{m} } \atop {0}} \right. = [{2x^{2} -\frac{4m^{3} x^{5}}{5} ]{{\frac{1}{m} } \atop {0}} \right.](https://tex.z-dn.net/?f=%5B%7B%5Cfrac%7B4x%5E%7B2%7D%7D%7B2%7D%20-%5Cfrac%7B4m%5E%7B3%7D%20x%5E%7B5%7D%7D%7B5%7D%20%5D%7B%7B%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%3D%20%5B%7B2x%5E%7B2%7D%20-%5Cfrac%7B4m%5E%7B3%7D%20x%5E%7B5%7D%7D%7B5%7D%20%5D%7B%7B%5Cfrac%7B1%7D%7Bm%7D%20%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Replacing the limits:

As I mentioned before, this volume is equal to 1, hence:
