Step-by-step explanation:
1 Remove parentheses.
8{y}^{2}\times -3{x}^{2}{y}^{2}\times \frac{2}{3}x{y}^{4}
8y
2
×−3x
2
y
2
×
3
2
xy
4
2 Use this rule: \frac{a}{b} \times \frac{c}{d}=\frac{ac}{bd}
b
a
×
d
c
=
bd
ac
.
\frac{8{y}^{2}\times -3{x}^{2}{y}^{2}\times 2x{y}^{4}}{3}
3
8y
2
×−3x
2
y
2
×2xy
4
3 Take out the constants.
\frac{(8\times -3\times 2){y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
(8×−3×2)y
2
y
2
y
4
x
2
x
4 Simplify 8\times -38×−3 to -24−24.
\frac{(-24\times 2){y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
(−24×2)y
2
y
2
y
4
x
2
x
5 Simplify -24\times 2−24×2 to -48−48.
\frac{-48{y}^{2}{y}^{2}{y}^{4}{x}^{2}x}{3}
3
−48y
2
y
2
y
4
x
2
x
6 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x
a
x
b
=x
a+b
.
\frac{-48{y}^{2+2+4}{x}^{2+1}}{3}
3
−48y
2+2+4
x
2+1
7 Simplify 2+22+2 to 44.
\frac{-48{y}^{4+4}{x}^{2+1}}{3}
3
−48y
4+4
x
2+1
8 Simplify 4+44+4 to 88.
\frac{-48{y}^{8}{x}^{2+1}}{3}
3
−48y
8
x
2+1
9 Simplify 2+12+1 to 33.
\frac{-48{y}^{8}{x}^{3}}{3}
3
−48y
8
x
3
10 Move the negative sign to the left.
-\frac{48{y}^{8}{x}^{3}}{3}
−
3
48y
8
x
3
11 Simplify \frac{48{y}^{8}{x}^{3}}{3}
3
48y
8
x
3
to 16{y}^{8}{x}^{3}16y
8
x
3
.
-16{y}^{8}{x}^{3}
−16y
8
x
3
Done
Answer:
![\sqrt[]{\frac{x+8}{4}}-3](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D-3)
Step-by-step explanation:

First rewrite
as y

Now swap y and x

Add 8 on both sides.


Divide by 4.


Extract the square root on both sides.
![\sqrt[]{\frac{x+8}{4}}=\sqrt[]{(y+3)^2}](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D%3D%5Csqrt%5B%5D%7B%28y%2B3%29%5E2%7D)
![\sqrt[]{\frac{x+8}{4}}=y+3](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D%3Dy%2B3)
Subtract 3 on both sides.
![\sqrt[]{\frac{x+8}{4}}-3=y+3-3](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D-3%3Dy%2B3-3)
![\sqrt[]{\frac{x+8}{4}}-3=y](https://tex.z-dn.net/?f=%5Csqrt%5B%5D%7B%5Cfrac%7Bx%2B8%7D%7B4%7D%7D-3%3Dy)
Answer:
An adorable kitten!
Step-by-step explanation:
Solution:
As we know reference angle is smallest angle between terminal side and X axis.
As cosine 45 ° is always positive in first and fourth quadrant.
i.e CosФ, Cos (-Ф) or Cos(2π - Ф) have same value.
As, Cos 45°, Cos (-45°) or Cos ( 360° - 45°)= Cos 315°are same.
So, Angles that share the same Cosine value as Cos 45° have same terminal sides will be in Quadrant IV having value Either Cos (-45°) or Cos (315°).
Also, Cos 45° = Sin 45° or Sin 135° i.e terminal side in first Quadrant or second Quadrant.