Answer:
![\sqrt[3]{2y^3} * 7\sqrt{18y} = 21(y^{\frac{3}{2}})(2^{\frac{5}{6}})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D%20%3D%2021%28y%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%282%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%29)
Step-by-step explanation:
The question is poorly formatted.
Given
![\sqrt[3]{2y^3} * 7\sqrt{18y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D)
Required
Derive an equivalent expression
![\sqrt[3]{2y^3} * 7\sqrt{18y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D)
Express 18 as 9 * 2
![\sqrt[3]{2y^3} * 7\sqrt{9 * 2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B9%20%2A%202y%7D)
Split the expression as follows:
![\sqrt[3]{2y^3} * 7\sqrt{9} * \sqrt{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B9%7D%20%2A%20%5Csqrt%7B2y%7D)
Take positive square root of 9
![\sqrt[3]{2y^3} * 7*3 * \sqrt{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%2A3%20%2A%20%5Csqrt%7B2y%7D)
![\sqrt[3]{2y^3} * 21 * \sqrt{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%2021%20%2A%20%5Csqrt%7B2y%7D)
![21*\sqrt[3]{2y^3} * \sqrt{2y}](https://tex.z-dn.net/?f=21%2A%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%20%20%5Csqrt%7B2y%7D)
The cube root can be rewritten to give:
![21*\sqrt[3]{2}*\sqrt[3]{y^3} * \sqrt{2y}](https://tex.z-dn.net/?f=21%2A%5Csqrt%5B3%5D%7B2%7D%2A%5Csqrt%5B3%5D%7By%5E3%7D%20%2A%20%20%5Csqrt%7B2y%7D)
![\sqrt[3]{y^3} = y^{3*\frac{1}{3}} = y](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E3%7D%20%3D%20y%5E%7B3%2A%5Cfrac%7B1%7D%7B3%7D%7D%20%3D%20y)
So, we have:
![21*\sqrt[3]{2} * y * \sqrt{2y}](https://tex.z-dn.net/?f=21%2A%5Csqrt%5B3%5D%7B2%7D%20%2A%20y%20%2A%20%20%5Csqrt%7B2y%7D)
Rewrite as:
![21y *\sqrt[3]{2} * \sqrt{2y}](https://tex.z-dn.net/?f=21y%20%2A%5Csqrt%5B3%5D%7B2%7D%20%20%2A%20%20%5Csqrt%7B2y%7D)
Split 
![21y *\sqrt[3]{2} * \sqrt{2} * \sqrt{y}](https://tex.z-dn.net/?f=21y%20%2A%5Csqrt%5B3%5D%7B2%7D%20%20%2A%20%20%5Csqrt%7B2%7D%20%2A%20%5Csqrt%7By%7D)
Collect Like Terms
![21y*\sqrt{y} *\sqrt[3]{2} * \sqrt{2}](https://tex.z-dn.net/?f=21y%2A%5Csqrt%7By%7D%20%2A%5Csqrt%5B3%5D%7B2%7D%20%20%2A%20%20%5Csqrt%7B2%7D)
Represent in index form

Apply law of indices




Hence:
![\sqrt[3]{2y^3} * 7\sqrt{18y} = 21(y^{\frac{3}{2}})(2^{\frac{5}{6}})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D%20%3D%2021%28y%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%282%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%29)
The value of x in terms of b is x =
. Therefore the value of x when b = 3 is x =
= -1.
We can find both answers by rearranging the equation to get "x =", and then substituting in 3 for b:
-2(bx - 5) = 16
-2bx + 10 = 16
- 10
-2bx = 6
÷ -2
bx = -3
÷ b
x = -3/b, which is the answer to the first part.
To get the second answer, we just substitute b = 3 into this equation and we get:
x = -3/b = -3/3 = -1
I hope this helps!
Answer:
-10 4/64, -.3125, 1/16, 10 51/80, 10 45/48
Step-by-step explanation:
negatives, the larger the number the smaller it is, opposite for positives. 10 45/48 is closer to 11 than 10 51/80
Max has X, and as Keisha has four more,
Keisha is 4+x
The total amount is x+x+4
2x+4
12w + 13¹/₃ = -6
<u> - 13¹/₃ - 13¹/₃
</u> <u>12w</u> = <u>-19¹/₃
</u> 12 12<u>
</u> w = -1¹¹/₁₈