The end behavior of the function y = x² is given as follows:
f(x) -> ∞ as x -> - ∞; f(x) -> ∞ as x -> - ∞.
<h3>How to identify the end behavior of a function?</h3>
The end behavior of a function is given by the limit of f(x) when x goes to both negative and positive infinity.
In this problem, the function is:
y = x².
When x goes to negative infinity, the limit is:
lim x -> - ∞ f(x) = (-∞)² = ∞.
Meaning that the function is increasing at the left corner of it's graph.
When x goes to positive infinity, the limit is:
lim x -> ∞ f(x) = (∞)² = ∞.
Meaning that the function is also increasing at the right corner of it's graph.
Thus the last option is the correct option regarding the end behavior of the function.
<h3>Missing information</h3>
We suppose that the function is y = x².
More can be learned about the end behavior of a function at brainly.com/question/24248193
#SPJ1
Answer:
AA Postulate
Step-by-step explanation:
The bottom lines are parallel. In this case they are also congruent. Combined with the top angle this makes in AA postulate
Answer:
<span>=<span>47/8</span>=5 and <span>7/<span>8</span></span></span>
ANSWER
y=x+5
EXPLANATION
We can observe the following pattern among the x and y-values.
9=4+5
12=7+5
18=13+5
22=17+5
24=19+5
Hence, in general, the function rule is
y=x +5