1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilya [14]
3 years ago
13

Please answer these questions! Need help!

Mathematics
1 answer:
astra-53 [7]3 years ago
3 0

Answer:

Question 2  is $500 and Question 3 is 5

Step-by-step explanation:

You might be interested in
Is it possible to draw a quaderilateral that is not a trapezoid and not a parallelogram
Scrat [10]

Answer:

Yes

Step-by-step explanation:

A square is a quadlirateral.

A rectangle is a quadrilateral.

5 0
1 year ago
Find the unknown value .<br> 45%=54/⬛️
Vitek1552 [10]

Answer:

12

Step-by-step explanation:

54/12=4.5 then move the decimal once

4 0
3 years ago
Identify the values hat create ordered pairs that are solutions to the equation 3x-5y=20
djyliett [7]
X-intercept is 0
Y-intercept is —4
5 0
3 years ago
Prove that: (b²-c²/a)CosA+(c²-a²/b)CosB+(a²-b²/c)CosC = 0​
IRISSAK [1]

<u>Prove that:</u>

\:\:\sf\:\:\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C=0

<u>Proof: </u>

We know that, by Law of Cosines,

  • \sf \cos A=\dfrac{b^2+c^2-a^2}{2bc}
  • \sf \cos B=\dfrac{c^2+a^2-b^2}{2ca}
  • \sf \cos C=\dfrac{a^2+b^2-c^2}{2ab}

<u>Taking</u><u> </u><u>LHS</u>

\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C

<em>Substituting</em> the value of <em>cos A, cos B and cos C,</em>

\longmapsto\left(\dfrac{b^2-c^2}{a}\right)\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+\left(\dfrac{c^2-a^2}{b}\right)\left(\dfrac{c^2+a^2-b^2}{2ca}\right)+\left(\dfrac{a^2-b^2}{c}\right)\left(\dfrac{a^2+b^2-c^2}{2ab}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2-a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2-b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2-c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^4-c^4)-(a^2b^2-a^2c^2)}{2abc}\right)+\left(\dfrac{(c^4-a^4)-(b^2c^2-a^2b^2)}{2abc}\right)+\left(\dfrac{(a^4-b^4)-(a^2c^2-b^2c^2)}{2abc}\right)

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2}{2abc}+\dfrac{c^4-a^4-b^2c^2+a^2b^2}{2abc}+\dfrac{a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>On combining the fractions,</em>

\longmapsto\dfrac{(b^4-c^4-a^2b^2+a^2c^2)+(c^4-a^4-b^2c^2+a^2b^2)+(a^4-b^4-a^2c^2+b^2c^2)}{2abc}

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2b^2+a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>Regrouping the terms,</em>

\longmapsto\dfrac{(a^4-a^4)+(b^4-b^4)+(c^4-c^4)+(a^2b^2-a^2b^2)+(b^2c^2-b^2c^2)+(a^2c^2-a^2c^2)}{2abc}

\longmapsto\dfrac{(0)+(0)+(0)+(0)+(0)+(0)}{2abc}

\longmapsto\dfrac{0}{2abc}

\longmapsto\bf 0=RHS

LHS = RHS proved.

7 0
3 years ago
What is x? mo is an angle bisector
ira [324]

The hypotenuse must always be c

6 0
3 years ago
Read 2 more answers
Other questions:
  • A baker is calculating the charge for two types of cookies. what formula tells the cost, in dollars, if chocolate chip cookies a
    5·2 answers
  • Which is the definition of a ray?
    13·2 answers
  • BRAINLIEST TO THE FIRST CORRECT ANSWER!!The expression on the left side of an equation is shown below.
    12·2 answers
  • Can you please Find 3/4- 75/n
    8·1 answer
  • Suppose y varies directly as x write a direct variation equation that relates x and y
    13·2 answers
  • There is a bag with only red marbles and blue marbles. The probability of randomly choosing a red marble is 7 8 . There are 72 m
    7·1 answer
  • Can someone please help
    8·2 answers
  • So far, Keith has burned 604.3 calories. He wants to burn a total of 700 calories. How many more calories must Keith burn?
    12·1 answer
  • Please help!!! I need to get this done by today really soon but I’m really confused.
    11·2 answers
  • The area, A, of an isosceles right triangle is a function of the length of its legs, s, and is represented by the equation: A =
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!