<em>Greetings from Brasil</em>
From radiciation properties:
![\large{A^{\frac{P}{Q}}=\sqrt[Q]{A^P}}](https://tex.z-dn.net/?f=%5Clarge%7BA%5E%7B%5Cfrac%7BP%7D%7BQ%7D%7D%3D%5Csqrt%5BQ%5D%7BA%5EP%7D%7D)
bringing to our problem
![\large{6^{\frac{1}{3}}=\sqrt[3]{6^1}}](https://tex.z-dn.net/?f=%5Clarge%7B6%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D%5Csqrt%5B3%5D%7B6%5E1%7D%7D)
<h2>∛6</h2>
Steps:
1) determine the domain
2) determine the extreme limits of the function
3) determine critical points (where the derivative is zero)
4) determine the intercepts with the axis
5) do a table
6) put the data on a system of coordinates
7) graph: join the points with the best smooth curve
Solution:
1) domain
The logarithmic function is defined for positive real numbers, then you need to state x - 3 > 0
=> x > 3 <-------- domain
2) extreme limits of the function
Limit log (x - 3) when x → ∞ = ∞
Limit log (x - 3) when x → 3+ = - ∞ => the line x = 3 is a vertical asymptote
3) critical points
dy / dx = 0 => 1 / x - 3 which is never true, so there are not critical points (not relative maxima or minima)
4) determine the intercepts with the axis
x-intercept: y = 0 => log (x - 3) = 0 => x - 3 = 1 => x = 4
y-intercept: The function never intercepts the y-axis because x cannot not be 0.
5) do a table
x y = log (x - 3)
limit x → 3+ - ∞
3.000000001 log (3.000000001 -3) = -9
3.0001 log (3.0001 - 3) = - 4
3.1 log (3.1 - 3) = - 1
4 log (4 - 3) = 0
13 log (13 - 3) = 1
103 log (103 - 3) = 10
lim x → ∞ ∞
Now, with all that information you can graph the function: put the data on the coordinate system and join the points with a smooth curve.
The answer is C -5/16 is -0.3 which means -5/16 cant be greater than or less than -0.3 so A and D are wrong and -2/3 is less than -5/16 which leaves us with C!
Answer:
Step-by-step explanation:
d = r * t Divide both sides by t
r = d / t
d = distance = 2.25 km
t = time = 3 3/4 minutes = 3.75 minutes
r = 2.25 / 3.75
r = 0.6 km / minute
r = 3/5 km / minute
If the units are different than those given, please state them underneath my answer. I'll get to it as soon as I see your comment.
Answer:
How many cups of food are in the 26 lb bag? There are about 4 cups per pound, so the 26 pound bag will contain approximately 104 cups.
Step-by-step explanation: