Experimental probability = 1/5
Theoretical probability = 1/4
note: 1/5 = 0.2 and 1/4 = 0.25
=============================================
How I got those values:
We have 12 hearts out of 60 cards total in our simulation or experiment. So 12/60 = (12*1)/(12*5) = 1/5 is the experimental probability. In the simulation, 1 in 5 cards were a heart.
Theoretically it should be 1 in 4, or 1/4, since we have 13 hearts out of 52 total leading to 13/52 = (13*1)/(13*4) = 1/4. This makes sense because there are four suits and each suit is equally likely.
The experimental probability and theoretical probability values are not likely to line up perfectly. However they should be fairly close assuming that you're working with a fair standard deck. The more simulations you perform, the closer the experimental probability is likely to approach the theoretical one.
For example, let's say you flip a coin 20 times and get 8 heads. We see that 8/20 = 0.40 is close to 0.50 which is the theoretical probability of getting heads. If you flip that same coin 100 times and get 46 heads, then 46/100 = 0.46 is the experimental probability which is close to 0.50, and that probability is likely to get closer if you flipped it say 1000 times or 10000 times.
In short, the experimental probability is what you observe when you do the experiment (or simulation). So it's actually pulling the cards out and writing down your results. Contrast with a theoretical probability is where you guess beforehand what the result might be based on assumptions. One such assumption being each card is equally likely.
Answer:
Hence, the ratios are given by 5:7, 25:49, 125:343.
Step-by-step explanation:
We are given two spheres such that:
Volume of small sphere
= 250 
Volume of large sphere
= 686
.
Then the ratio of volume = 250 : 686 = 125 : 343.
Since, the volume of a sphere =
, this gives us that the ratio of the radius = ∛
: ∛
i.e. The ratio of the radius = ∛125 : ∛343 = 5 : 7.
Further, as the surface area of a sphere =
, this gives us that the ratioof surface area =
: 
i.e The ratio of the surface area =
:
= 25 : 49
So, the ratio of the surface areas = 25 : 49.
Hence, the ratios are given by 5:7, 25:49, 125:343.
Answer:
walang keef fuzzy gasification
₇P₅ is a permutation. you can find this setting in the statistics menu of your scientific calculator (i think).
If you don't have a scientific calculator, you can use the following formula:
nPr = 
₇P₅ = 
= 
= 
= 7 * 6 * 5 * 4 * 3
= 2520
Answer: C
The equation is y=2x-2
To find the x-value you take any two pairs of value such as (-2,-3) and (0,-2) and you just use y1-y2/x1-x2. And for y-value you just see when x is zero