-
The median number of minutes for Jake and Sarah are equal, but the mean numbers are different.
-
For this, you never said the choices, but I’ve done this before, so I’m going to use the answer choices I had, and hopefully they are right.
Our choices are -
• The median number of minutes for Jake is higher than the median number of minutes for Sarah.
• The mean number of minutes for Sarah is higher than the mean number of minutes for Jake.
• The mean number of minutes for Jake and Sarah are equal, but the median number of minutes are different.
• The median number of minutes for Jake and Sarah are equal, but the mean number of minutes are different.
————————
So to answer the question, we neee to find the median and mean for each data set, so -
Jack = [90 median] [89.6 mean]
Sarah = [90 median] [89.5 mean]
We can clearly see the median for both is 90, so we can eliminate all the choices that say they are unequal.
We can also see that Jack has a higher mean (89.6) compared to Sarah (89.5).
We can eliminate all the choices that don’t imply that too.
That leaves us with -
• The median number of minutes for Jake and Sarah are equal, but the mean number of minutes are different.
Answer:
Step-by-step explanation:
1. You have the following function given in the problem:
2. Then, to find asked in the exercise, you only need to substitute (which is the input value) into the given function.
3. Therefore, keeping the above on mind, you obtain that is:
Answer:
144/100=1.44
Step-by-step explanation:
it is done