Answer:
5 length
Step-by-step explanation:
The diagram attached shows two equilateral triangles ABC & CDE. Since both squares share one side of the square BDFH of length 10, then their lengths will be 5 each. To obtain the largest square inscribed inside the original square BDFH, it makes sense to draw two other equilateral triangles AGH & EFG at the upper part of BDFH with length equal to 5.
So, the largest square that can be inscribe in the space outside the two equilateral triangles ABC & CDE and within BDFH is the square ACEG.
Answer:
Option a) 1/5 is most closely to 0.
Answer:
5.the square root is positive number lessthan 1 is beteween 0 and 1
1.the square root of a positive number greater than 1 is less thsn number