Hey there!
On this problem, we have to combine like terms. A like term in this sense doesn't have to have the same coefficient, but it has to have the same variable.
Our like terms are 2m and 4m, along with 3 and 5.
When we add 2m and 4m we get 6m, and when we add 5 and 3 we get eight.
Notice how 5 and three are like terms because they're both whole numbers and don't have any variables.
Your solution is 6m + 8.
My advice to you is pay attention to your like terms and don't mix them up. A strategy is to underline like terms in the same color.
Hope this helps!
Answer: 24,000
Step-by-step explanation:
SIRI
Finding the inverse function of

Remember that when you compose

with its inverse

you'll get the identity function:
![\mathsf{(f\circ f^{-1})(x)=x}\\\\ \mathsf{f\big[f^{-1}(x)\big]=x}\\\\](https://tex.z-dn.net/?f=%5Cmathsf%7B%28f%5Ccirc%20f%5E%7B-1%7D%29%28x%29%3Dx%7D%5C%5C%5C%5C%20%5Cmathsf%7Bf%5Cbig%5Bf%5E%7B-1%7D%28x%29%5Cbig%5D%3Dx%7D%5C%5C%5C%5C)
So if

then
![\mathsf{f\big[f^{-1}(x)\big]=10-[f^{-1}(x)]^2}\\\\ \mathsf{x=10-[f^{-1}(x)]^2}\\\\ \mathsf{[f^{-1}(x)]^2=10-x}\\\\ \mathsf{f^{-1}(x)=\pm \sqrt{10-x}}\\\\ \mathsf{f^{-1}(x)=-\sqrt{10-x}~~~or~~~f^{-1}(x)=\sqrt{10-x}}](https://tex.z-dn.net/?f=%5Cmathsf%7Bf%5Cbig%5Bf%5E%7B-1%7D%28x%29%5Cbig%5D%3D10-%5Bf%5E%7B-1%7D%28x%29%5D%5E2%7D%5C%5C%5C%5C%20%5Cmathsf%7Bx%3D10-%5Bf%5E%7B-1%7D%28x%29%5D%5E2%7D%5C%5C%5C%5C%20%5Cmathsf%7B%5Bf%5E%7B-1%7D%28x%29%5D%5E2%3D10-x%7D%5C%5C%5C%5C%20%5Cmathsf%7Bf%5E%7B-1%7D%28x%29%3D%5Cpm%20%5Csqrt%7B10-x%7D%7D%5C%5C%5C%5C%20%5Cmathsf%7Bf%5E%7B-1%7D%28x%29%3D-%5Csqrt%7B10-x%7D~~~or~~~f%5E%7B-1%7D%28x%29%3D%5Csqrt%7B10-x%7D%7D)
The sign of the inverse depends on the domain of

itself, and where it's invertible.
If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2198197 I hope this helps.
Tags: <em>inverse function definition identity domain algebra</em>
Awesome job its all correct! 100%
Learn on!