
The semicircle shown at left has center X and diameter W Z. The radius XY of the semicircle has length 2. The chord Y Z has length 2. What is the area of the shaded sector formed by obtuse angle WXY?

RADIUS = 2
CHORD = 2
RADIUS --> XY , XZ , WX
( BEZ THEY TOUCH CIRCUMFERENCE OF THE CIRCLES AFTER STARTING FROM CENTRE OF THE CIRCLE)

THE AREA OF THE SHADED SECTOR FORMED BY OBTUSE ANGLE WXY.

AREA COVERED BY THE ANGLE IN A SEMI SPHERE


Total Area Of The Semi Sphere:-

Area Under Unshaded Part .
Given a triangle with each side 2 units.
This proves that it's is a equilateral triangle which means it's all angles r of 60° or π/3 Radian
So AREA :-


Total Area - Area Under Unshaded Part


Answer:
do i round to the nearest hundredth?if so it would be 0.11
Step-by-step explanation:
Answer:
X=3
Step-by-step explanation:
What you have to do is minus 2 from 11 and you get 9
Now divide 3 into 9 and you get 3
x=3 you can also plug 3 for x to see if the equation is right
Answer:
The answer is below
Step-by-step explanation:
The standard form of the equation of an ellipse with major axis on the y axis is given as:

Where (h, k) is the center of the ellipse, (h, k ± a) is the major axis, (h ± b, k) is the minor axis, (h, k ± c) is the foci and c² = a² - b²
Since the minor axis is at (37,0) and (-37,0), hence k = 0, h = 0 and b = 37
Also, the foci is at (0,5) and (0, -5), therefore c = 5
Using c² = a² - b²:
5² = a² - 37²
a² = 37² + 5² = 1369 + 25
a² = 1394
Therefore the equation of the ellipse is:

Answer:
k = +10 or -10
Step-by-step explanation:
It's given in the question that the roots of the eqn. are real and equal. So , the discriminant of the eqn. should be equal to 0.





