For this case we first define the variable:
x = number of terms.
The equation that models the problem is:
f (x) = 3.4 - 0.6x
We have then that the first four terms are:
x = 1
f (1) = 3.4 - 0.6 (1) = 3.4 - 0.6 = 2.8
x = 2
f (2) = 3.4 - 0.6 (2) = 3.4 - 1.2 = 2.2
x = 3
f (3) = 3.4 - 0.6 (3) = 3.4 - 1.8 = 1.6
x = 4
f (4) = 3.4 - 0.6 (4) = 3.4 - 2.4 = 1
Answer:
The rule for the sequence is:
f (x) = 3.4 - 0.6x
option 1
Answer:
it's a sooooooo it's the first one
Answer:
30.7 km
Step-by-step explanation:
The distance between the two fires can be found using the Law of Cosines. For ΔABC in which sides 'a' and 'b' are given, along with angle C, the third side is ...
c = √(a² +b² -2ab·cos(C))
The angle measured between the two fires is ...
180° -(69° -35°) = 146°
and the distance is ...
c = √(11² +21² -2(11)(21)cos(146°)) ≈ √945.015
c ≈ 30.74
The straight-line distance between the two fires is about 30.7 km.
8.25 inches once you multiply the 3/4 by 2 and add that and also add the 3/4 from the previous week you’ll get your answer
Hello there. I believe it’s c