Answer:
First mechanic 10 hours, Second is 15 hours
Step-by-step explanation:
x + y = 25, so y = 25 - x
75x + 45y = 1425
Substitute in the first equation
75x + 45(25 - x) = 1425
75x + 1125 - 45x = 1425
30x = 300
x = 10
Therefore, y = 15
Answer:
Simplifying
10x + -2 = 118
Reorder the terms:
-2 + 10x = 118
Solving
-2 + 10x = 118
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '2' to each side of the equation.
-2 + 2 + 10x = 118 + 2
Combine like terms: -2 + 2 = 0
0 + 10x = 118 + 2
10x = 118 + 2
<em><u>Combine like terms: 118 + 2 = 120</u></em>
<em><u>Combine like terms: 118 + 2 = 12010x = 120</u></em>
<em><u>Combine like terms: 118 + 2 = 12010x = 120Divide each side by '10'.</u></em>
<em><u>Combine like terms: 118 + 2 = 12010x = 120Divide each side by '10'.x = 12</u></em>
<em><u>Combine like terms: 118 + 2 = 12010x = 120Divide each side by '10'.x = 12Simplifying</u></em>
<em><u>Combine like terms: 118 + 2 = 12010x = 120Divide each side by '10'.x = 12Simplifyingx = 12</u></em>
Slope =( 4 - 0) /(-6 - 2) = 4/-8 = -1/2
<span>passes through the points (−6, 4) and (2, 0).
so
y - 0 = -1/2(x - 2)
y = -1/2 (x - 2) </span><span>
</span><span>
hope it helps</span>
We know:
You have $750 to spend.
A limo costs $700.
They charge $0.15 per mile.
Since we want both sides to balance out, we simply put the solution (how much we have to spend) on one side of the equation, and then the rest on the other side as shown here:
$750 (balance) = $700 (how much renting the limo costs) + 0.15x (it's a decimal since it's 15 cents per mile; the x represents however many miles the limo can travel before it reaches the $750 cap (on the left side of the equation))
Basically:
$750 = $700 + $0.15x
Now, if you want to solve how many miles the limo can travel, simply subtract $700 from both sides (subtract it from the $750).
$750 - $700 = $50
The equation should now be $50 = $0.15x
Isolate x (divide $0.15 to both sides) so:
$50 ÷ $0.15 = 333
The limo can travel a maximum of 333 miles.