Answer:
See explanation
Step-by-step explanation:
Given the equation:

Separate variables
and
:
![2x\sin (2y)dx=(x^2+12)\cos y dy\\ \\\dfrac{2x\sin (2y)dx}{x^2+12}=\cos ydy\ [\text{Divided by non-zero expression }x^2+12]\\ \\\dfrac{2x}{x^2+12}dx=\dfrac{\cos y}{\sin (2y)}dy\ [\text{Divided by }\sin (2y)]\\ \\\dfrac{2x}{x^2+12}dx=\dfrac{\cos y}{2\sin y\cos y}dy\ [\text{Use formula }\sin (2y)=2\sin y\cos y]\\ \\\dfrac{2x}{x^2+12}dx=\dfrac{1}{2\sin y}dy\ [\text{Simplify when }\cos y\neq 0]](https://tex.z-dn.net/?f=2x%5Csin%20%282y%29dx%3D%28x%5E2%2B12%29%5Ccos%20y%20dy%5C%5C%20%5C%5C%5Cdfrac%7B2x%5Csin%20%282y%29dx%7D%7Bx%5E2%2B12%7D%3D%5Ccos%20ydy%5C%20%5B%5Ctext%7BDivided%20by%20non-zero%20expression%20%7Dx%5E2%2B12%5D%5C%5C%20%5C%5C%5Cdfrac%7B2x%7D%7Bx%5E2%2B12%7Ddx%3D%5Cdfrac%7B%5Ccos%20y%7D%7B%5Csin%20%282y%29%7Ddy%5C%20%5B%5Ctext%7BDivided%20by%20%7D%5Csin%20%282y%29%5D%5C%5C%20%5C%5C%5Cdfrac%7B2x%7D%7Bx%5E2%2B12%7Ddx%3D%5Cdfrac%7B%5Ccos%20y%7D%7B2%5Csin%20y%5Ccos%20y%7Ddy%5C%20%5B%5Ctext%7BUse%20formula%20%7D%5Csin%20%282y%29%3D2%5Csin%20y%5Ccos%20y%5D%5C%5C%20%5C%5C%5Cdfrac%7B2x%7D%7Bx%5E2%2B12%7Ddx%3D%5Cdfrac%7B1%7D%7B2%5Csin%20y%7Ddy%5C%20%5B%5Ctext%7BSimplify%20when%20%7D%5Ccos%20y%5Cneq%200%5D)
Now,


Find the constant solutions, if any, that were lost in the solution of the differential equation:
When

then

Answer:
hello misi how are you doing?
----------<span>55 | 165<span>0
</span></span> <span>30
</span> ---------<span><span>55 | 1650
</span><span> 165
--------
00
</span></span><span> 1650 ÷ 55 = 30..
</span>
Hope it helps !!!!
Answer: 14
Step-by-step explanation:
Step 1: Substitute the x and y values:

Step 2: Find 4 to the power of 3.
4 x 4 x 4 = 64
Now find 2 to the power of 3
2 x 2 x 2 = 8
Step 3: Subtract the two values as mentioned in the equation:
64 - 8 = 56
Step 4: Now divide 56 by 4 as mentioned in the equation.
56 ÷ 4 = 14
And... 14 is the answer!
Hope this helps :)
-jp524