Answer:
<h2>A. The amount of time it would take to watch ten 1/2 hour videos.</h2>
Step-by-step explanation:
Sana makatulong :)
Answer:
The ball reaches a height of 29.25 ft after 1.125 seconds
Step-by-step explanation:
The maximum height of a parabola can always be found by looking for the vertex. You can find the x value (or in this case the t value) of a vertex by using -b/2a in which a is the coefficient of x^2 and b is the coefficient of x.
-b/2a
-(36)/2(-16)
-36/-32
1.125 seconds
Now to find the height, we input that value in for t
h = -16t^2 + 36t + 9
h = -16(1.125)^2 + 26(1.125) + 9
29.25 feet
Since we have to solve the given formula for h(height) so, the correct option is (a)
Answer:
equation 1
y = -2x
equation 2
y = x-3
Solution to both
(1,-2)
Step-by-step explanation:
We need to get the equations of both lines
General form is;
y = mx + c
where m is slope and c is the y-intercept
Table 1
since we have a point 0,0; the y-intercept here is zero
Let us get the slope. We can do this by selecting any two points
m = (y2-y1)/(x2-x1)
m = (2-10)/(-1+5) = -8/4 = -2
So the equation of the first line is;
y = -2x
Table 2
we get the slope
m = (4+2)/(7-1) = 6/6 = 1
The partial equation is;
y = x + c
To get c, we select any two point and substitute
4 = 7 + c
c = 4-7
c = -3
So the equation is;
y = x-3
To get the solution to both systems, we equate the y
-2x = x - 3
-2x-x = -3
-3x = -3
x = -3/-3
x = 1
To get y, we substitute;
recall; y = -2x
y = -2(1)
y = -2
Solution to the system is;
(1,-2)
1. Take an arbitrary point that lies on the first line y=3x+10. Let x=0, then y=10 and point has coordinates (0,10).
2. Use formula
to find the distance from point
to the line Ax+By+C=0.
The second line has equation y=3x-20, that is 3x-y-20=0. By the previous formula the distance from the point (0,10) to the line 3x-y-20=0 is:
.
3. Since lines y=3x+10 and y=3x-20 are parallel, then the distance between these lines are the same as the distance from an arbitrary point from the first line to the second line.
Answer:
.