The area of this rectangle is 18 square units. What is the unit of measurement?
32 miles per gallon of gasoline.
Just divide the miles by gallons of gas.
F(X) = 6/X
F(X) = 6 • 1/X
F(X) = 6 • x^-1
F(X) = 6x^-1
F'(X) = 6 • d(x^-1)/dx
F'(X) = 6 • -1x^-1-1
F'(X) = 6 • -1x^-2
F'(X) = -6x^-2
F'(X) = -6/x^2
F'(-2) = -6/(-2)^2
F'(-2) = -6/4
F'(-2) = -3/2
The solution would be C. -3/2.
Answer:
D
Step-by-step explanation:
irdk sorry if its wrong :(
<u>Answer:</u>
![\boxed{\pink{\sf The \ number \ of \ cubes \ that \ can \ be \ fitted \ is 60 .}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cpink%7B%5Csf%20The%20%5C%20number%20%5C%20of%20%5C%20cubes%20%5C%20that%20%5C%20can%20%5C%20be%20%5C%20fitted%20%5C%20is%2060%20.%7D%7D)
<u>Step-by-step explanation:</u>
Given dimensions of the box = 20cm × 6cm × 4cm .
Dimension of the cube = 2cm × 2cm × 2cm .
Therefore the number of cubes that can be fitted into the box will be equal to the Volume of box divided by the Volume of the cube. So ,
![\boxed{\red{\bf \implies No. \ of \ cubes \ = \dfrac{Volume \ of \ box}{Volume \ of \ cube }}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cred%7B%5Cbf%20%5Cimplies%20No.%20%5C%20of%20%5C%20cubes%20%5C%20%3D%20%5Cdfrac%7BVolume%20%5C%20of%20%5C%20box%7D%7BVolume%20%5C%20of%20%5C%20cube%20%7D%7D%7D)
![\bf \implies n_{cubes} = \dfrac{20cm \times 6cm \times 4cm .}{2cm \times 2cm \times 2cm } \\\\\bf\implies n_{cubes} = 10 \ times 3cm \times 2cm \\\\\implies \boxed{\bf n_{cubes}= 60 }](https://tex.z-dn.net/?f=%5Cbf%20%5Cimplies%20n_%7Bcubes%7D%20%3D%20%5Cdfrac%7B20cm%20%5Ctimes%20%206cm%20%5Ctimes%204cm%20.%7D%7B2cm%20%20%5Ctimes%202cm%20%20%5Ctimes%202cm%20%7D%20%5C%5C%5C%5C%5Cbf%5Cimplies%20n_%7Bcubes%7D%20%20%3D%2010%20%5C%20times%203cm%20%5Ctimes%202cm%20%5C%5C%5C%5C%5Cimplies%20%5Cboxed%7B%5Cbf%20n_%7Bcubes%7D%3D%2060%20%7D)
<h3>
<u>Hence</u><u> the</u><u> </u><u>number</u><u> </u><u>of</u><u> </u><u>cubes</u><u> </u><u>that</u><u> </u><u>can</u><u> </u><u>be</u><u> </u><u>fitted</u><u> </u><u>in</u><u> the</u><u> </u><u>box </u><u>is</u><u> </u><u>6</u><u>0</u><u> </u><u>.</u></h3>