Answer:
7
Step-by-step explanation:
the side length of the largest square is x
2x-1=3x-8
-x=-7
x=7
Answer:
The area of the shaded figure is:
Step-by-step explanation:
To obtain the area of the shaded figure, first, you must calculate this as a rectangle, with the measurements: wide (4 units), and long (6 units):
- Area of a rectangle = long * wide
- Area of a rectangle = 6 * 4
- Area of a rectangle = 24 units^2
How the figure isn't a rectangle, you must subtract the triangle on the top, so, now we calculate the area of that triangle with measurements: wide (4 units), and height (2 units):
- Area of a triangle =

- Area of a triangle =

- Area of a triangle =

- Area of a triangle = 4 units^2
In the end, you subtract the area of the triangle to the area of the rectangle, to obtain the area of the shaded figure:
- Area of the shaded figure = Area of the rectangle - Area of the triangle
- Area of the shaded figure = 24 units^2 - 4 units^2
- <u>Area of the shaded figure = 20 units^2</u>
I use the name "units" because the exercise doesn't say if they are feet, inches, or another, but you can replace this in case you need it.
Answer: 5/8 :)
Step-by-step explanation:
Answer:
12,345 tablets may be prepared from 1 kg of aspirin.
Step-by-step explanation:
The problem states that low-strength children’s/adult chewable aspirin tablets contains 81 mg of aspirin per tablet. And asks how many tablets may be prepared from 1 kg of aspirin.
Since the problem measures the weight of a tablet in kg, the first step is the conversion of 81mg to kg.
Each kg has 1,000,000mg. So
1kg - 1,000,000mg
xkg - 81mg.
1,000,000x = 81

x = 0.000081kg
Each tablet generally contains 0.000081kg of aspirin. How many such tablets may be prepared from 1 kg of aspirin?
1 tablet - 0.000081kg
x tablets - 1kg
0.000081x = 1

x = 12,345 tablets
12,345 tablets may be prepared from 1 kg of aspirin.
It the second one. the net for a square pyramid.